REPUBLIQUE DEMOCRATIQUE DU CONGO

MINISTÈRE DE L'ENSEIGNEMENT PRIMAIRE, SECONDAIRE ET TECHNIQUE

Secrétariat Général Direction des Programmes Scolaires et Matériel Didactique

Programme éducatif

du Domaine d'Apprentissage des Sciences

Classe de **2**^e année des Humanités Scientifiques

Sous-Domaine d'Apprentissage :

Sciences Physiques et Technologies de l'Information et de la Communication

1^{re} édition

Kinshasa 2021

©DIPROMAD/MEPST, Kinshasa, 2021

Conception et réalisation : Équipe Technique du Projet d'Éducation pour la Qualité et la Pertinence des Enseignements aux niveaux Secondaire et Universitaire

Ce programme a été conçu avec le soutien de « LA BANQUE MONDIALE ».

PREFACE

La République démocratique du Congo a entrepris la réforme de son Système éducatif, concrétisée par la production des programmes innovés dans le Domaine d'Apprentissage des Sciences (DAS).

Ces programmes sont conçus dans le souci d'amener les apprenants à construire leurs propres connaissances afin d'être utiles à la société après leur cursus scolaire.

Les programmes des 7° et 8° années de l'Éducation de Base ont été rénovés et déjà généralisés dans toutes les écoles de la République.

Les programmes des 1^{re} et 2^e années des Humanités Scientifiques, comme d'ailleurs ceux de l'Éducation de Base, sont centrés sur la mise en activité des élèves par le traitement des situations qui ont un sens pour eux et qui font appel à des savoirs essentiels pour aboutir au développement des compétences.

L'Équipe Technique de la Direction des Programmes Scolaires et Matériel Didactique (DIPROMAD), avec l'appui de la Banque Mondiale à travers le Projet d'Éducation pour la Qualité et la Pertinence des Enseignements aux niveaux Secondaire et Universitaire (PEQPESU) est à pied d'œuvre pour mettre à la disposition des utilisateurs ces programmes du cycle précité.

Nous ne pouvons à notre niveau que remercier et féliciter cette Équipe d'Experts pour le travail de titan abattu et dont les utilisateurs, en particulier les élèves, récolteront les précieux fruits attendus de cette réforme.

Le Ministre de l'Enseignement Primaire, Secondaire et Technique

REMERCIEMENTS

Après la rédaction des programmes du Domaine d'Apprentissage des Sciences (DAS) pour le Cycle Terminal de l'Éducation de Base (CTÉB) et de 1^{re} année des Humanités Scientifiques, l'Équipe Technique de la Direction des Programmes Scolaires et Matériel Didactique chargée de cette mission vient de produire les nouveaux programmes de la classe de 2^e années des Humanités Scientifiques.

C'est ici l'occasion de remercier les institutions et les acteurs qui ont contribué à la réussite de cette réforme, à savoir :

- le Gouvernement de la République pour sa volonté politique d'initier cette réforme.
- la Banque Mondiale pour son appui financier au "Projet d'Éducation pour la Qualité et la Pertinence des Enseignements aux niveaux Secondaire et Universitaire (PEQPESU)".
- le Ministère de l'Enseignement Primaire, Secondaire et Professionnel en charge de la partie administrative et de la stratégie de la réforme.
- le Staff dirigeant du Projet PEQPESU :
 - Madame Raïssa MALU, Chef de l'Unité Technique d'Appui (UTA),
 - Monsieur NLANDU MABULA KINKELA, Directeur-Chef de Service des Programmes Scolaires et Matériel Didactique, Superviseur général de l'Équipe Technique,
 - Monsieur IBUTCH KADIHULA Valère, Superviseur second de l'Équipe Technique.
 - Le Professeur Philippe Jonnaert, Titulaire honoraire de la Chaire UNESCO pour le développement curriculaire à l'Université du Québec à Montréal (Canada), Formateur et Encadreur de l'Équipe Technique.
 - Les Experts de l'Équipe Technique, producteurs des programmes éducatifs rénovés
 - NSIALA MPASI Simon
 - NKONGOLO KAHAMBU Victor
 - KABAKABA TWA BATWA Longin
 - NGOYI KABUNDI Rombaut
 - MBUYAMBA KAYOLA Sylvain
 - SALA WIKHA Hilarion
 - SUMBI MAVITA Zéphyrin
 - KATSUNGA MUSA Ford
 - KALAMBAYI KABEYA Smoon
 - KASONGA KAYEMBE Max

- SIOSIO KIERE Patrick
- KILUBUKA MUTU Huguette
- TSHILANDA A MAHULA Bernard
- BANZA KASONGO Pierre
- MALIANI KAWAYA Jeff
- MIHALO LENGE MWANA Hubert
- MBUYAMBA TSHIUNZA Roger
- TSHIMANGA TSHAMALA Jean
- MUTI TUMINAR Nestor
- PHAKA NGIMBI Jacques
- MAMBA KALENGULA Médard
- MBUYI MAKENGA Lucie
- MUYIKUA DANA Thely
 - o les institutions et services qui ont du se passer des services quotidiens de certains de leurs membres retenus dans l'Équipe Technique et l'Équipe mixte du SERNAFOR; il s'agit de la Direction des Programmes Scolaires et Matériel Didactique (DIPROMAD), du Service National de Formation (SERNAFOR), des Inspections Principales Provinciales des provinces éducationnelles ciblées, de l'Université Pédagogique Nationale (UPN), de l'ISP/GOMBE et de certaines écoles secondaires de Kinshasa.

La République leur présente ses sincères remerciements.

SIGLES

°C : degré Celsius

CGS : centimètre-gramme-seconde

Cste : Constante

CTÉB : Cycle terminal de l'éducation de base

Ctrl : Contrôle

CUDC : Chaire UNESCO de développement curriculaire

DAS : Domaine d'Apprentissage des Sciences

DSCRP : Document de la Stratégie de Croissance et de

Réduction de la Pauvreté

DIPROMAD : Direction des Programmes Scolaires et Matériel

Didactique

EB : Éducation de Base

e-mail : Électronique mail (courrier électronique)

EPT : Éducation Pour Tous

g : gramme Gb : gigabyte

HSC : Humanités scientifiques

ISP : Institut Supérieur Pédagogique

ITA : Institut Technique Agricole
ITI : Institut Technique Industriel

K : kelvin

MEPST : Ministère de l'Enseignement Primaire, Secondaire et

Technique

MK_fS : mètre-kilogramme-force-seconde

MKS : mètre-kilogramme-seconde

MKSA : mètre-kilogramme-seconde-ampère

ml : millilitre
MS : Microsoft
Net : Network

ODD : Objectifs de Développement Durable

PEn : Profil d'Entrée

PEQPESU : Projet d'Éducation pour la Qualité et la Pertinence des

Enseignements aux niveaux Secondaire et Universitaire

PGCD : Plus Grand Commun Diviseur
PPCM : Plus Petit Commun Multiple

PS : Profil de Sortie

RDC : République Démocratique du Congo

RESEN : Rapport d'État du Système Éducatif National

SD : Sous-domaine SE : Savoir essentiel

SERNAFOR : Service National de la Formation
SI : Système International d'unités
SSE : Socle de savoirs essentiels

SSSEF : Stratégies Sous-Sectoriel de l'Éducation et de la

Formation

SVT : Sciences de la Vie et de la Terre

TAB : Tabulation

TIC : Technologies de l'Information et de la Communication

UPN : Université Pédagogique Nationale UQAM : Université du Québec à Montréal

WWW : World Wide Web

TABLE DES MATIERES

Ρ	REFACE	İ
R	EMERCIEMENTS	ii
T.	ABLE DES MATIERES	vi
P	ARTIE 1 : TEXTES INTRODUCTIFS	1
	I. INTRODUCTION	1
	II. APPROCHE PAR LES SITUATIONS	3
	2.1 La construction d'une compétence par les élèves	3
	2.2 Les savoirs essentiels	3
	2.3 Les activités des élèves	4
	2.4 L'évaluation	4
	III. POLITIQUE EDUCATIVE EN RDC	5
	3.1 Fondements	5
	3.2 L'offre de formation	6
	3.3 Le Régime pédagogique	8
	3.4 Les langues dans l'enseignement	8
	3.5 Les Programmes de formation	9
	3.6 Les résultats	9
	3.7 Les Modalités d'évaluation et sanction des études	.10
P	ARTIE 2 : REFERENTIELS	.12
1.	SCIENCES PHYSIQUES / CHIMIE	.25
	MSPC 4.1 Structure des composes organiques	.25
	MSPC 4.2 Réactions organiques	.27
	MSPC 4.3 Analyse élémentaire	.28
	MSPC4.4 Hydrocarbures	.30
	MSPC4.5 Hydrocarbures	.31
	MSPC4.6 Hydrocarbures	.33
	MSPC 4.7 Fonctions chimiques organiques	.34
	MSPC 4.8 Fonctions chimiques organiques	.36
	MSPC 4.9 Fonctions chimiques organiques	.39

	MSPC 4.10 Fonctions chimiques organiques	.41
	MSPC 4.11 Fonctions chimiques organiques	.44
	MSPC 4.12 Réactions chimiques inorganiques	.46
	MSPC4.13 Réactions chimiques inorganiques	.48
	MSPC 4.14 Application des réactions REDOX	.50
	MSPC4.15 Préparation de l'eau de javel	.52
	MSPC4.16 Préparation de l'eau de dakin	.53
	MSPC4.17 Préparation du savon	.55
2.	SCIENCES PHYSIQUES / PHYSIQUE	.57
	MSP 4.1 Modes de transmission de la chaleur	.57
	MSP 4.2 Isolation thermique	.59
	MSP 4.3 Quelques échelles thermométriques	.60
	MSP 4.4 Quelques thermomètres usuels	.63
	MSP4.5 Dilatation thermique des solides	.65
	MSP 4.6 Loi de variation du volume d'un liquide	.70
	MSP 4.7 Loi de Boyle-Mariotte	.72
	MSP 4.8 Loi de Gay-Lussac	.74
	MSP 4.9 Loi de charles	.76
	MSP 4.10 Sources de chaleur et relations calorimetriques	.78
	MSP 4.11 Principes de la calorimetrie	.80
	MSP 4.12 Le Calorimètre	.82
	MSP 4.13 Changement d'états	.84
	MSP 4.14 Sources de lumière et corps éclairés	.86
	MSP 4.15 Principe et vitesse de propagation de la lumière	.88
	MSP 4. 16 Applications pratiques de la propagation de la lumière	.90
	MSP 4.17 Réflexion de la lumière	.93
	MSP 4.18 Miroirs et réflexion de la lumière	.95
	MSP 4.19 La réfraction de la lumière	.97
	MSP4. 20 La réflexion et la réfraction de la lumière	.99
	MSP 4.21 Instruments d'optique1	01

	MSP	4.22 Instruments d'optique	.104
3.	TEC	CHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION	.105
	MTIC	4.1 Fonctions trigonométriques avec MS Excel	.105
	MTIC	4.2 Fonctions statistiques	.107
	MTIC	4.3 Tableaux et Graphiques croises dynamiques	.109
	MTIC	4.4 Methode de consolidation des données avec MS Excel	.112
	MTIC	4.5 Méthode de validation des données avec MS Excel	.115
	MTIC	4.6 Structures de contrôle mixtes	.118
	MTIC	4.7 Tableaux uni et bidimensionnel	.121
	MTIC	4.8 Algorithme de recherche simple	.124
	MTIC	4.9 Algorithme de tri des données dans un tableau	.128
	MTIC	4.10 Fonctions et Procédures	.132
	MTIC	4.11 Fichiers de données	.136
R	EFER	ENCES BIBLIOGRAPHIQUES	.138
	I.	DOCUMENTS GENERAUX	.138
	II.	MANUELS ET OUVRAGES SPECIFIQUES	.139
	III.	WEBOGRAPHIE	.141

PARTIE 1: TEXTES INTRODUCTIFS

I. INTRODUCTION

La République Démocratique du Congo s'est résolument engagée dans la voie de la modernisation de son système éducatif et d'une manière particulière, dans la production des programmes éducatifs modernisés du Domaine d'Apprentissage des Sciences (DAS) au Cycle Terminal de l'Éduction de Base et des Humanités Scientifiques. L'Éducation de Base constitue le socle commun qui oriente toutes les études ultérieures. Elle poursuit l'Objectif de Développement Durable n°4 (ODD4) selon lequel tous les enfants avec leurs spécificités doivent s'intégrer dans une école ouverte et inclusive.

Au terme de huit années de scolarité obligatoire et gratuite de l'Éducation de Base, conformément à la Loi-cadre n° 14/004 du 11 février 2014 de l'Enseignement National, les enfants sont capables de s'intégrer dans la vie active de la communauté et disposent des outils et des connaissances pour ce faire ou sont suffisamment formés pour continuer avec succès un cursus scolaire.

Cela suppose aussi une réforme curriculaire structurelle en profondeur qui assure la cohérence entre les différents niveaux d'apprentissage en élaborant un curruculum de manière holistique. L'Éducation de Base devient ainsi le pilier du système éducatif congolais, un socle commun sur lequel les niveaux post Éducation de Base doivent s'appuyer.

Ainsi, depuis septembre 2016, l'Équipe Technique du Projet d'Éducation pour la Qualité et la Pertinence des Enseignements aux niveaux Secondaire et Universitaire, sous la direction d'un Consultant International, s'est attelé inlassablement à la rédaction des programmes innovés du Domaine d'Apprentissage des Sciences pour le Cycle Terminal de l'Éducation de Base et pour les Humanités Scientifiques.

Tous les Programmes Éducatifs du Domaine d'Apprentissage des sciences accompagnés de leurs Guides en Appui, tant pour le Cycle Terminal de l'Éducation de Base (CTEB) que pour les Humanités Scientifiques sont rédigés, expérimentés, validés et généralisés dans toutes les écoles de la République.

Les nouveaux Programmes ainsi produits fondent leur enseignementapprentissage sur une nouvelle approche didactique des mathématiques et des sciences qui fait des élèves des acteurs sociaux autonomes, cultivés et ingénieux, des acteurs compétents dans des situations variées.

Les savoirs scientifiques procurent une certaine autonomie, une certaine capacité de communiquer, une certaine maîtrise face à des situations concrètes.

Les mathématiques et les sciences apprises aux humanités sont utiles à chacun pour gérer sa vie quotidienne, pour accéder à un emploi et l'exercer ou pour aborder des études supérieures, sans oublier la formation qu'il lui faudra de plus en plus poursuivre au cours de la vie adulte. Elles fournissent aux apprenants un exemple d'expression concise, exempte d'ambiguïté, susceptible de leur apprendre à penser logiquement, à être précis, à avoir une compréhension spatiale.

Du point de vue de leur structure, tous les programmes éducatifs du Domaine d'Apprentissage des Sciences comportent les mêmes éléments :

- une introduction qui situe le cadre général de la réforme de ces programmes du DAS aux humanités scientifiques;
- **un profil d'entrée** qui détermine les préalables que doit réunir l'élève avant d'entamer la classe concernée;
- un profil de sortie qui définit les compétences que l'élève a développées à l'issue de ses apprentissages;
- des compétences de vie courante que l'élève doit développer lors des apprentissages en vue de leur utilisation dans la vie pratique;
- une liste de savoirs essentiels que l'enseignant opérationnalise afin d'aider l'élève à construire, dans de bonnes conditions, les connaissances au cours d'un apprentissage scientifique solide. Cette liste de savoirs essentiels, conçue selon les standards internationaux, tient compte du volume horaire prescrit par le régime pédagogique;
- une banque de situations qui organise en grandes catégories, les familles de situations illustrées de façon synthétique par des exemples de situations.
 Une banque de situations permet à l'enseignant de trouver les éléments nécessaires à la contextualisation des contenus des apprentissages scolaires dans des situations concrètes :
- **des matrices** qui sont des cadres bien structurés pour le traitement compétent des situations. Elles comportent les éléments suivants :
 - un code et un titre:
 - un ou plusieurs savoirs essentiels;
 - une compétence : chaque activité est reliée à une compétence que l'élève devra développer ; l'élève construit des connaissances et développe des compétences à travers ses actions en situation.
 - un exemple de situation : chaque compétence est suivie d'un exemple de situation dans laquelle l'élève devra être actif pour développer progressivement la compétence à travers le traitement qu'il effectue de la situation.
 - un tableau de spécification décrivant le traitement que l'élève doit réaliser de la situation présentée.

Deux dimensions sont prises en compte: les actions de l'élève et les contenus sur lesquels portent ces actions.

une évaluation : des exemples d'items sont proposés aux élèves pour vérifier la maîtrise de nouveaux savoirs essentiels leur proposés. En outre, il est suggéré le traitement d'une situation similaire pour vérifier l'acquisition de la compétence par le traitement des situations de la même famille.

II. APPROCHE PAR LES SITUATIONS

2.1 La construction d'une compétence par les élèves

D'une manière générale, un élève, comme toute personne, construit ses compétences en traitant efficacement des situations.

Par exemple, ce matin, chacun a été confronté à la situation de devoir arriver à temps à l'école. Il a fallu partir à temps du domicile, utiliser le moyen de transport approprié en fonction de la distance à parcourir, choisir un itinéraire en fonction de différents paramètres : le trafic, l'état de la route, la pluie à certaines périodes...Finalement, c'est parce qu'il a traité efficacement cette situation que tel élève est arrivé à temps à l'école. Et c'est parce qu'il a bien géré cette situation qu'il peut être déclaré compétent face à ce type de situations.

Pour que les élèves développent réellement des compétences en sciences, le programme leur propose de nombreuses situations à traiter. Ces situations sont présentées dans une *banque de situations* qui les organise en grandes catégories, les familles de situations. Pour chacune de ces familles de situations, des exemples sont proposés. Dès lors, les compétences nommées dans le programme sont élaborées en fonction des situations à traiter.

C'est en ce sens, que l'approche développée dans le programme est centrée sur des situations pour que l'élève développe des compétences : c'est une approche par les situations comme moyen pour s'assurer du développement de compétences par les élèves.

2.2 Les savoirs essentiels

Pour développer des compétences, l'élève doit s'appuyer sur différentes ressources. Une ressource est un moyen qu'il utilise pour traiter une situation.

Par exemple, afin de partir de la maison pour arriver à temps à l'école, l'élève doit pouvoir lire l'heure. « Lire l'heure » est une ressource qu'il utilise pour traiter cette situation.

Dans un contexte scolaire, les situations suggérées doivent permettre aux élèves d'utiliser des ressources qui relèvent des savoirs essentiels des disciplines.

Par exemple pour traiter une situation en Sciences physiques et Technologies de l'Information et de la Communication, l'élève doit utiliser des savoirs essentiels qui relèvent des disciplines des Sciences physiques et Technologies de l'Information et de la Communication. Dès lors, en s'appuyant sur les standards internationaux qui décrivent ce que l'élève doit apprendre, des listes de savoirs essentiels sont établies.

2.3 Les activités des élèves

Pour traiter les situations qui sont suggérées dans le programme, l'élève doit être actif. L'élève agit, en posant une *action sur un savoir essentiel*. Toutes les actions que l'élève doit poser en classe sur des savoirs essentiels, sont décrites dans des tableaux précisés du programme.

Grâce aux situations, aux actions et aux savoirs essentiels, l'élève est actif; il agit concrètement en classe. C'est parce qu'il est actif dans des situations, qu'il construit des connaissances et développe des compétences.

2.4 L'évaluation

L'évaluation des apprentissages porte sur deux dimensions : la vérification de la maitrise des savoirs essentiels et la vérification de la compétence de l'élève :

- Exemples d'items. Quelques exemples d'items sont proposés pour permettre à l'enseignant de vérifier dans quelle mesure l'élève maitrise bien les savoirs essentiels décrits dans l'activité.
- Traitement de la situation similaire. Des activités sont également proposées pour vérifier dans quelle mesure l'élève se montre capable de traiter la situation ou une autre situation proche de celle qui a été proposée dans l'activité.

III. POLITIQUE EDUCATIVE EN RDC

3.1 Fondements

Par Politique Éducative, il faut comprendre un certain nombre de choix fondamentaux qui guident l'éducation, par la détermination des finalités, des buts et des objectifs généraux de l'enseignement au niveau du pouvoir politique. Cette détermination de la politique éducative constitue l'ensemble des problèmes primordiaux de tout système éducatif. Ces problèmes sont liés à la fonction sociale de l'école et relèvent d'une philosophie de l'éducation et d'une conception de la culture. Ainsi, une politique éducative est fortement ancrée dans les valeurs qui caractérisent une nation. Dans ce contexte, la République Démocratique du Congo s'est dotée, depuis le 17 septembre 2015, d'une politique éducative inscrite dans « La lettre de politique éducative». Cette dernière est inspirée de la Loi Cadre de l'Enseignement National (2014), du Document de la Stratégie de Croissance et de Réduction de la Pauvreté II (DSCRP II), de la déclaration de Dakar sur l'EPT (Dakar 2000) et les cibles pour l'atteinte de l'ODD4 (INCHEON, 2015), des Objectifs du Millénaire pour le Développement (OMD). Un regard a également été porté sur les éléments de diagnostic du Rapport d'État du Système Éducatif National (RESEN 2014) et des stratégies sous-sectorielles l'enseignement primaire, secondaire, technique et professionnel. de l'enseignement supérieur et universitaire ainsi que celle de l'éducation non formelle. Il est à noter que la Loi-Cadre elle-même a tenu compte de beaucoup d'autres instruments juridiques internationaux dûment ratifiés par la République Démocratique du Congo entre autres :

- La Déclaration Universelle des Droits de l'Homme ;
- La Déclaration des Droits de l'Homme et des Peuples ;
- L'Acte constitutif de l'UNESCO ;
- La Convention relative aux Droits de l'Enfant :
- La Déclaration mondiale sur l'Éducation pour Tous ;
- La Charte Africaine des Droits de l'Homme et des Peuples ;
- La Charte Panafricaine de la Jeunesse :
- L'Accord de Florence :
- La Constitution de la République Démocratique du Congo en ses articles 12, 14, 37, 43, 44, 45, 46, 123, 202, 203, et 204.
- La Loi portant protection de l'enfant ainsi que des recommandations des états généraux de l'éducation tenus à Kinshasa en février 1996.

Ces différents instruments juridiques constituent le socle des orientations fondamentales de l'Enseignement National.

La Politique Éducative tient également compte de l'évolution des systèmes de l'enseignement supérieur et universitaire, tel qu'exprimé par « L'Accord de

Florence (1950) et son Protocole-Annexe de Nairobi de 1976, relatifs à l'importation d'objets de caractère éducatif, scientifique ou culturel ».

En plus, les programmes éducatifs des mathématiques et des sciences prennent en considération la promotion du genre et de l'inclusion sociale.

3.2 L'offre de formation

3.2.1 Éducation non formelle

Toute personne ayant atteint 18 ans d'âge sans avoir accédé à l'enseignement primaire bénéficie d'une formation sous forme d'éducation non formelle :

- L'alphabétisation des adultes ;
- L'enseignement spécialisé aux enfants vivant avec handicap ou déscolarisés :
- Le centre de rattrapage scolaire ;
- Le recyclage des formateurs ;
- La formation permanente continue.

3.2.2 L'Enseignement formel

La durée d'une année scolaire (dans l'enseignement primaire, secondaire et professionnel) est de 222 jours au maximum et 180 jours au minimum qui représentent 900 heures de présence à l'école. Une séquence didactique dure cinquante minutes au tronc commun comme au cycle long.

3.2.2.1 L'Enseignement secondaire

La mission de l'Enseignement secondaire consiste à transférer chez l'élève des connaissances générales et spécifiques afin de lui permettre d'appréhender les éléments du patrimoine national et international.

3.2.2.2 La mission de l'enseignement secondaire

- Développer chez les élèves l'esprit critique, la créativité et la curiosité intellectuelle ;
- Préparer l'élève soit à l'exercice d'un métier ou d'une profession, soit à la poursuite des études supérieures et/ou universitaires selon ses intérêts et ses aptitudes.

Par ailleurs, il est important de noter que :

- le Secondaire général dure deux ans et constitue un tronc commun dispensant des connaissances générales dans plusieurs domaines. Désormais, ce secondaire général constitue le Cycle Terminal de l'Éducation de Base (CTÉB).
- 2. les humanités générales durent quatre ans (deux ans de cycle moyen et deux ans de cycle supérieur) et organisent plusieurs sections (pédagogique, littéraire, scientifique, etc.) subdivisées en options (Pédagogie Générale,

- Normale, Éducation Physique, Latin-Philosophie et Latin-Grec, Sciences (Math-Physique et Chimie-Biologie), etc.).
- 3. Les humanités techniques et professionnelles sont organisées en cycle court d'une durée de trois ans et en cycle long de quatre ans.

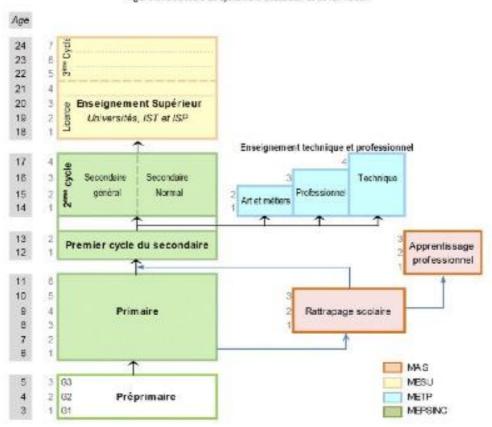


Figure 1 : Structure du système d'éducation et de formation

3.3 Le Régime pédagogique

Domaines	Sous-domaines	Disciplines	Nb d'Heu sema 3º an scienti	ires/ aine née	d'He sem 4 ^e ar	ore ures/ aine nnée tifique		olume re total
		Algèbre & Analyse	3		3		8,3	
		Géométrie & Trigonométrie	2	7	2	7	5,5	19,4
		Dessin scientifique	1		1		2,8	
		Statistique	1		1		2,8	
Sciences	0-:	Biologie générale	2		2		5,6	
	Sciences de la Vie et de la Terre	Microbiologie	1	4	1	4	2,8	11,2
	vie et de la Telle	Géologie	1		1		2,8	
	Sciences	Chimie	3		3		8,3	
	Physiques et TIC	Physique	3	7	3	7	8,3	19,4
	TIC		1		1		2,8	
Totaux pour le	domaine des Scie		18		18		50	50
Langues		,	5	8	5	8	13,7	22
Langues		5	3	0	3	8	8,3	~~
		Éducation civique et morale	2		2		5,6	
Univers		Géographie	2		2		5,6	
social et environ-		Éducation à la vie	1	9	1	9	2,8	25,2
nement		Histoire	2		2		5,6	
1101110111		Sociologie Africaine	2		-		2,8	
		Économie politique	_		2	2,	2,8	
Arts	-	-	_	-	-	-	-	-
Développement Éducation personnel physique		1	1	1	1	2,8	2,8	
Totaux pour les domaines autres que les sciences 18 18 50 50					50			
Volume horaire	Volume horaire total hebdomadaire 36 36 100							

3.4 Les langues dans l'enseignement

- a) Le français est la langue d'enseignement.
- b) Les langues nationales : le kikongo, le lingala, le swahili et le tshiluba sont utilisées comme médium (véhicule) d'enseignement et d'apprentissage.
- c) Les langues étrangères les plus importantes, eu égard à nos relations économiques, politiques et diplomatiques, sont instituées comme disciplines.

3.5 Les Programmes de formation

Loi-Cadre. Selon la la formation au secondaire privilégie la professionnalisation qui conduit à l'exercice ďun emploi. Cette professionnalisation permet d'éviter l'inadéquation entre le programme d'une filière donnée et la pratique du métier.

Des réformes avec des actions prioritaires sont mises en branle pour atteindre le développement du Système éducatif de notre pays. Parmi ces actions prioritaires nous citons :

- le renforcement de la formation initiale à travers la structure des humanités scientifiques ; cela implique :
 - la définition des référentiels de formation ;
 - la révision des curricula :
 - la révision du temps des apprentissages scolaires;
- le renforcement de la formation continue des enseignants du primaire et du secondaire :
- la généralisation de l'utilisation des langues nationales comme médium d'enseignement au 1er cycle du primaire et au premier niveau d'alphabétisation;
- l'introduction du concept « Éducation de Base ».

3.6 Les résultats

L'Enseignement national vise comme résultats la maitrise et le contrôle de la science et de la technologie comme facteurs essentiels de la puissance économique de la RD Congo en assurant aux élèves une formation intellectuelle leur faisant acquérir des connaissances et développer des compétences utiles à la résolution des problèmes dans leur milieu de vie et dans le monde.

Aussi, à travers l'éducation à la gestion, à la paix et à la citoyenneté, le système cherche à ancrer chez le jeune congolais, les valeurs de civisme et de moralité. La vision du Gouvernement pour le développement du Secteur de l'éducation (résultat attendu de la réforme) est la construction d'un Système Éducatif inclusif et de qualité contribuant efficacement au développement national.

C'est ainsi que le développement du Système Éducatif de la RD Congo s'appuie sur les trois axes stratégiques ci-dessous :

- 1. La création des conditions d'un système éducatif de qualité ;
- 2. La promotion d'un Système d'Éducation équitable au service de la croissance et de l'emploi ;
- 3. L'instauration d'une gouvernance transparente et efficace.

Dans le domaine particulier de l'enseignement/apprentissage des sciences, les contenus sont regroupés en trois sous-domaines :

- Dans le sous-domaine des Sciences de la Vie et de la Terre, l'enfant va à la découverte du monde réel ; il prend conscience qu'il appartient à un monde plus vaste qu'il doit comprendre, transformer, respecter, protéger et préserver.
- Dans le sous-domaine des Sciences Physiques et de Technologies de l'Information et de la Communication (SPTIC), l'enfant comprend les lois fondamentales qui régissent notre univers, ce qui lui permet d'agir sur cet univers et de saisir la complexité et la beauté de la démarche scientifique. En outre, l'enfant comprend la nécessité des objets techniques qui l'entourent, ce qui lui permet de s'en approprier les démarches de conception, d'étude et de fabrication. Grâce aux TIC, l'enfant comprend les profonds changements apportés par l'Informatique dans nos vies et dans le monde de travail ; il utilise les méthodes et les outils de programmation ainsi que les techniques pour résoudre les problèmes de la vie quotidienne.
- Le sous-domaine des Mathématiques qui constitue un outil pour les autres disciplines scientifiques, permet à l'enfant de structurer sa pensée et de modéliser les phénomènes naturels. Les Mathématiques permettent en outre à l'enfant de développer son imagination, le goût de la recherche, de la découverte et de la résolution des problèmes.

3.7 Les Modalités d'évaluation et sanction des études

Dans le Système éducatif de la RD Congo, il existe trois sortes d'évaluations :

- Évaluation prédictive (test d'intérêt et d'orientation) ;
- Évaluation formative (activités complémentaires, interrogations, examens semestriels);
- Évaluation certificative (examens et tests de fin de cycle);

A l'enseignement secondaire, la fin des études est évaluée et sanctionnée de la façon ci-après :

- le Cycle de l'Éducation de Base par un Examen National (évaluation certificative) sanctionné par l'obtention d'un certificat ou d'un brevet dont les modalités sont fixées par l'Autorité de tutelle de l'Enseignement Primaire, Secondaire et Professionnel;
- le Cycle court de l'Enseignement professionnel par des examens (évaluations certificatives), un stage et un jury professionnel sanctionné par l'obtention d'un diplôme d'aptitude professionnelle;

- le Cycle long de l'Enseignement général, normal et technique par un Examen d'État (évaluation certificative) qui aboutit à l'obtention d'un diplôme d'État.

PARTIE 2: REFERENTIELS

Les différents référentiels, profils d'entrée et de sortie, compétences de vie courante, savoirs essentiels et banque de situations, orientent l'ensemble du programme. Ils précisent les éléments essentiels à la planification et à l'organisation du travail par l'enseignant.

I. Profil d'entrée en 2^e année des humanités scientifiques

Pour aborder la 2° année des humanités scientifiques, l'élève doit avoir comme pré-requis :

a / En Sciences physiques

- La transformation de la matière
- L'atome
- La classification périodique des éléments
- > La molécule
- > La liaison chimique
- La combinaison
- > La réaction chimique
- > La fonction chimique
- Les notions fondamentales de chimie organique
- Les techniques de préparation
- La métrologie
- La cinématique
- La dynamique
- La statique
- L'hydrostatique

b) En Technologies de l'information et de la communication

- L'utilisation des fonctions prédéfinies de MS EXCEL :
 - Fonctions mathématiques
 - Fonctions statistiques
 - Fonctions logiques
 - > Fonctions d'ingénierie
- L'utilisation des outils de présentation, d'organisation et de gestion des données avec MS EXCEL :
 - Graphiques
 - Sous-totaux
 - Filtres et formats conditionnels
- L'utilisation de l'algorithmique simple et du codage dans les :

- Structures conditionnelles
- > Structures répétitives simples
- Structures des cas.

II. Profil de sortie de la 2^e année des humanités Scientifiques

Au terme de la 2^e année des humanités scientifiques, l'élève sera capable de traiter avec succès et de façon socialement acceptable les situations qui relèvent des familles des situations suivantes :

a) Sciences Physiques:

- structures des composés organiques
- réactions organiques
- analyse élémentaire
- hydrocarbures
- fonctions chimiques organiques
- réactions chimiques inorganiques
- application des réactions redox
- préparation des produits de consommation
- notion de propagation de la chaleur
- > échelles thermométriques
- phénomènes de dilatation
- calorimétrie
- problèmes de propagation, de réflexion et de réfraction de la lumière
- étude de l'œil humain (défauts et correction avec des instruments optiques).

b) Technologies de l'Information et de la Communication (TIC) :

- maîtrise des Fonctions prédéfinies de MS Excel
- > organisation et gestion des données avec Excel
- utilisation de l'algorithmique et du codage

III.Compétences de vie courante

L'enseignant doit s'atteler, dans l'enseignement-apprentissage, au développement des douze compétences de vie courante chez l'élève. Celles-ci sont regroupées en quatre dimensions d'apprentissage telles que reprises dans le tableau ci-après :

DIMENSION D'APPRENTISSAGE	CATEGORIES DES COMPETENCES DE VIE
Dimension cognitive ou « apprendre à connaître »	Compétences pour apprendre : créativité, pensée critique, résolution des problèmes
Dimension instrumentale ou « apprendre à faire »	Compétences pour l'employabilité : coopération, négociation, prise de décision
Dimension personnelle ou « apprendre à être »	Compétences pour la responsabilisation personnelle : autogestion, résilience, communication
Dimension sociale ou « apprendre à vivre ensemble »	Compétence pour une citoyenneté active : respect de la diversité, empathie, participation

IV. Liste des savoirs essentiels

4.1 Sciences physiques

4.1.1. Chimie

CATEGORIE	SOUS- CATEGORIE	SAVOIRS ESSENTIELS	Codes
I. Structure des composés organiques	1. Isomérie	- Isomérie de constitution - Stéréo-isomérie	MSPC 4.1
II. Réactions chimiques organiques	2. Principaux types de réactions organiques	 Réaction de substitution Réaction d'addition Réaction d'élimination Réaction de transposition 	MSPC 4.2
III. Analyse élémentaire	3. Principe d'analyse	 Analyse élémentaire qualitative Analyse élémentaire quantitative formule brute et masse d'un composé organique par calcul 	MSPC 4.3
IV. Hydrocarbures	Hydrocarbures saturés	- Alcanes	MSPC 4.4

	5. Hydrocarbures non saturés	- Alcènes - Alcynes	MSPC 4.5
	et Hydrocarbures aromatiques	- Benzène	MSPC 4.6
V. Fonctions chimiques	6. Fonctions halogénées	- Halogénure d'alkyl	MSPC 4.7
organiques	7. Fonctions Oxygénées et soufrées	- Alcool - Thiol - Éther-oxyde	MSPC 4.8
	oouoo	Aldéhyde - Cétone	MSPC 4.9
		Acide carboxylique - Ester - Anhydride d'acide	MSPC 4.10
	8. Fonctions azotées	- Amine- Amide- Nitrile	MSPC 4.11
VI. Réactions chimiques inorganiques	9. Réactions ioniques	 Réaction de précipitation Réaction de volatilisation Réaction acide - base Règle de Berthollet 	MSPC 4.12
	10. Réaction d'oxydo- réduction	 Étage d'oxydation Réaction d'oxydation Réaction de réduction Réaction redox Équation redox 	MSPC 4.13
VII. Application des réactions redox	11. Électrolyse	 Notions de l'électrolyse Électrolyseur Loi de Faraday 	MSPC 4.14
VIII. Préparation des	12. Produits de	- Eau de javel	MSPC 4.15
produits de consommation	nettoyage et de désinfection	- Eau de dakin	MSPC 4.16
CONSOMMANION	ao acominocion	- Savon	MSPC 4.17

4.1.2 Physique

CATEGORIE	SOUS- CATEGORIE	SAVOIRS ESSENTIELS	Codes
I. CHALEUR A. Propagation	Modes de transmission de la chaleur	- Conduction - Convection - Rayonnement	MSP4.1
de la chaleur	2. Isolation thermique	- Thermos - Isolation des habitations	MSP4.2
B. Thermométrie	3. Échelles thermométriques	 Échelle CELSIUS Échelle FAHRENHEIT Échelle KELVIN Échelle Réaumur Conversion d'une échelle à une autre 	MSP4.3
	4. Quelques thermomètres usuels	- Thermomètre à mercure - Thermomètre médical	MSP4.4
C. Dilatométrie	5. Dilatation des solides	Dilatation linéaireDilatation superficielleDilatation cubique	MSP4.5
	6. Dilatation des liquides	-Dilatation apparente et dilatation absolue - Dilatation anormale de l'eau et ses conséquences	MSP4.6
	7. Dilatation des gaz	- Dilatation des gaz à température constante (Loi de BOYLE-MARIOTTE)	MSP4.7
		- Dilatation des gaz à pression constante (Loi de GAY- LUSSAC)	MSP4.8 MSP4.9
		- Dilatation des gaz à volume constant (Loi de CHARLES)	
	8. Gaz parfaits	Formule de MARIOTTE - GAY-LUSSACÉquation d'état des gaz parfaits	
D. Calorimétrie	9. Sources de chaleur et relations calorimétriques	Sources de chaleurQuantité de chaleurChaleurs massique et spécifique	MSP4.10

		- Relation fondamentale de la Calorimétrie	MSP4.11
	10. Calorimètre	- Calorimètre à eau - Équation calorimétrique	
	11. Principes de la calorimétrie	Principe des échangesPrincipe des transformationsInverses	MSP4.12
		-Changements d'états -Lois du changement d'états -Chaleur latente	MSP4.13
II. OPTIQUE GEOMETRIQUE A. Propagation de la lumière	12. Sources de lumière et corps éclairés	 Sources primaires ou directes de lumière Sources secondaires ou indirectes de lumière 	MSP4.14
	13. Principe et vitesse de propagation de la lumière 14. Rayons et faisceaux lumineux	 Principe fondamental de l'optique géométrique Vitesse de propagation de la lumière dans un milieu Rayon lumineux Sortes de faisceaux lumineux 	MSP4.15
	15. Applications pratiques de la propagation de la lumière	- Ombres et pénombres - Phases de la lune - Éclipses	MSP4.16
B. Réflexion de la lumière	16. Réflexion de la lumière	Phénomène de réflexionLois de la réflexion de la lumière	MSP4.17 MSP4.18
		- Miroirs et réflexion de la lumière - Instruments d'optique : Œil Loupe - microscope	MSP 4.21
C. Réfraction de la lumière	17. Réfraction de la lumière	 Phénomène de réfraction Lois de la réfraction Réfraction et réflexion totale Décomposition de la lumière 	MSP4.19 MSP4.20
		par un prisme et phénomène d'arc-en-ciel - Lentilles	MSP4.21

4.2 Technologies de l'information et de la communication

CATEGORIES	SOUS-CATEGORIE	SAVOIRS ESSENTIELS	CODES
I. TABLEUR EXCEL	1. FORMULES ET FONCTIONS MATHEMATIQUES ET TRIGONOMETRIQUES	- Fonctions Trigonométriques: Sinus (sin), Cosinus (cos), Tangente (tg), Cotangente (cotg), Sécante (sec), Cosécante (cosec), radian, degré, grade - Fonctions statistiques: moyenn e arithmétique, moyenne géométrique, moyenne harmonique, médiane, mode, écart ou amplitude, écart type, variance.	MTIC 4.1
	2. ORGANISATION ET GESTION DES DONNEES AVEC EXCEL	 Tableaux et graphiques croisés dynamiques Méthode de consolidation des données Méthode de validation des données 	MTIC 4.4 MTIC 4.5
II. ALGORITHMIQUE ET CODAGE	3. APPLICATIONS DU CODAGE	 Structures de contrôles mixtes (composées) Tableaux (uni et multidimensionnels) Algorithme de recherches simples et dichotomiques Algorithme de tri (par sélection et à bulles) dans un tableau Fonctions prédéfinies et procédures Fichiers de données 	MTIC 4.6 MTIC 4.7 MTIC 4.8 MTIC 4.9 MTIC 4.10 MTIC 4.11

V. Banque des situations

5.1 Sciences physiques

N°	Famille des situations	Exemples des situations
Chi	mie	
1	Situations dans lesquelles l'élève est confronté à la structure des composés organiques	 Montage des modèles moléculaires Représentation des molécules dans l'espace Prédiction de l'activité optique d'une molécule organique Identification de différents isomères partant d'une formule brute Classification des isomères plans et des isomères stériques MSPC 4.1
2	Situations dans lesquelles l'élève est confronté aux problèmes des réactions chimiques organiques	 Réalisation d'une réaction chimique simple Identification de la nature d'une réaction chimique organique Application des réactions chimiques organiques Usage des catalyseurs dans les réactions chimiques organiques Principaux types des réactions organiques (MSPC4.2).
3	Situations dans lesquelles l'élève est confronté à l'analyse élémentaire organique	 Analyse élémentaire qualitative du glucose Mise en évidence du carbone dans un composé organique MSPC 4.3 Mise en évidence de l'Hydrogène et de l'oxygène dans un composé organique Détermination des proportions de carbone et d'Hydrogène d'un échantillon d'hydrocarbure de masse connue Détermination de la masse molaire d'un composé gazeux
4	Situations dans lesquelles l'élève est confronté à la notion des hydrocarbures	 Combustion des hydrocarbures Détection du pétrole dans une contrée distillation fractionnée du pétrole Les hydrocarbures saturés, constituants essentielles du pétrole MSPC 4.4 Utilisation des hydrocarbures comme source d'énergie Préparation des polymères Préparation des dérivés des hydrocarbures Utilisation du Benzène dans l'industrie chimique (MSPC 4.6)

		9. Pollution due à l'utilisation des hydrocarbures
5	Situations dans lesquelles l'élève est confronté à la problématique des fonctions chimiques organiques	 Acides gras dans l'industrie alimentaire Distillation de l'alcool éthylique Utilisation des substances organiques en Médecine Utilisation des halogenures d'alkyles dans le ménage (MSPC 4.7) Substances organiques dans la nature Préparation des substances organiques Fonctions oxygénées et soufrées à carbone monovalent (MSPC 4.8) Fonctions oxygénées à carbone bivalent (MSPC 4.9) Fonctions oxygénées à carbone trivalent (MSPC 4.10) Fonctions azotés (MSPC 4.11) Toxicité des substances organiques Détection des substances organiques Production du vin de fruits (orange, mangues) Additifs alimentaires
6	Situations dans lesquelles l'élève est confronté aux des réactions chimiques inorganiques	 Précipitation de l'argent contenu dans un minerai Pyrolyse du carbonate de calcium Test de détection du dioxyde de carbone par l'eau de chaux Réactions ioniques (MSPC 4.12) Rouille d'un clou Identification des produits d'oxydation des substances organiques Réactions d'oxydoréduction (MSPC 4.13)
7	Situations dans lesquelles l'élève est confronté aux applications des réactions Redox	 Électrolyse de l'eau en milieu acide sulfurique Électrolyse du chlorure de Sodium en solution aqueuse MSPC 4.14 Électrolyse du chlorure de Sodium fondu Électrolyse du sulfate cuivreux en solution aqueuse Corrosion d'un matériau Fabrication d'un électrolyseur Réactions spontanées et réactions forcées
8	Situations dans lesquelles l'élève est confronté à la préparation des produits de consommation	 Préparation de la peinture Préparation du parfum Préparation du savon (MSPC 4.17) Préparation de l'eau de Javel (MSPC 4.15) Préparation de l'eau de Dakin (MSPC 4.16)

		6. Fabrication de la colle
		7. Préparation de l'esprit de sel
		8. Préparation du vernis
Phy	/sique	
10	Situations dans lesquelles l'élève est confronté phénomènes de propagation de la chaleur	 Conduction thermique à partir du chauffage de l'extrémité d'une barre de fer. MSP 4.1 Rayonnement thermique d'une barre métallique chauffée. Rayonnement thermique d'une barre métallique. Conservation du thé dans le thermos Isolation des habitations dans les différentes régions de la R.D Congo. MSP 4.2 Mise en évidence des phénomènes de convection et de rayonnement à la cuisine.
11	Situations dans lesquelles l'élève est confronté à la problématique de thermométrie	 Températures de l'ébullition et de congélation de l'eau. Détermination de la relation générale de conversions réciproques des échelles thermométriques. MSP 4.3 Passage de l'échelle Celsius à l'échelle. Fahrenheit et vice-versa. Passage de l'échelle Celsius à l'échelle Kelvin et vice-versa. Passage de l'échelle Kelvin à l'échelle Fahrenheit et vice-versa. Utilisation du thermomètre à mercure de laboratoire. Utilisation du thermomètre médical. MSP 4.4 Essai de fabrication d'un thermomètre artisanal à huile de palme, au tshintshiampa, lotoko, kabondo, agene (alcool éthylique local), etc.
12	Situations dans lesquelles l'élève est confronté aux problèmes de dilatométrie	 Mesure des allongements des différentes barres solides; des rails de chemins de fer. MSP4 .5 Régulation thermique d'un fer à repasser électrique. Fabrication d'un dilatomètre simple. Mesure de l'augmentation de surface d'une plaque métallique rectangulaire. Mesure de l'augmentation de volume d'une plaque métallique sphérique. Analyse expérimentale de la dilatation anormale de l'eau. MPS4.6

		7. Détermination de l'équation d'état des gaz parfaits. MPS4.7, MPS4.8, MPS4.9
13	Situations dans lesquelles l'élève est confronté aux problèmes de calorimétrie	 Utilisation des différentes sources de chaleur. MPS4.10 Utilisation du calorimètre à eau. Détermination expérimentale de la quantité de chaleur. Détermination expérimentale de la chaleur massique d'une substance et spécifique. Détermination expérimentale de l'équation calorimétrique. MPS4.11 Détermination expérimentale principe des échanges. MPS4.12 Détermination expérimentale principe des transformations inverses. Changement d'états MSP 4.13 Lois du changement d'états Chaleur latente
14	Situations dans lesquelles l'élève est confronté aux phénomènes de propagation de la lumière	 Utilisation des sources primaires de lumière. MPS4.14 Fabrication et utilisation d'une chambre noire pour déterminer les ombres MPS4.15 Application du principe fondamental de propagation de la lumière en topographie et photographie. MPS4.15 Différentes sortes de faisceau lumineux et leurs applications pratiques. MSP 4.16 Perception d'une ombre dans un jardin. Perception d'une pénombre dans une maison Éclipse du soleil. Éclipse de lune. Succession des jours et des nuits Phases de la lune Utilisation d'un rétroprojecteur.
	Situations dans lesquelles l'élève est confronté au phénomène de réflexion de la lumière	 Détermination expérimentale des lois de la réflexion de la lumière MPS4.17 Applications de la réflexion de la lumière en circulation routière. Marche d'un rayon lumineux qui frappe un objet opaque. Expérience de deux bougies pour visualiser la réflexion de la lumière. MPS4.18

16	Situations dans lesquelles	1. Vision des objets dans l'eau.
	l'élève est confronté au phénomène de réfraction de	 Détermination expérimentale des lois de réfraction. MPS4.19
	la lumière	3. Réfraction et réflexion totale MPS4.20
		Dispersion de la lumière à partir d'un prisme et phénomène de l'arc-en-ciel. Dhénomène de missage.
		5. Phénomène de mirages6. Fibres optiques et ses applications en
		communication et en médecine. 7. Utilisation d'une fontaine lumineuse
		8. Utilisation des lentilles MSP 4.21
17	Situations dans lesquelles	1. Œil MSP 4.22
l'élève est confronté aux instruments d'optique	2. Loupe	
	3. Microscope	

5.2 Technologie de l'information

N°	Famille de situations	Exemples de situation
1	Situations pour lesquelles l'élève est confronté aux problèmes liés à l'utilisation des formules et fonctions trigonométriques et statistiques	 Fonctions trigonométriques avec MS Excel MTIC 4.1 Mesures et comparaison des grandeurs Fonctions statistiques MTIC4.2 Partage des biens Détermination du poids volumique d'un liquide. Réalisation d'un plan de construction d'une case en utilisant le Système International d'unités de mesure (SI).
2.	Situations pour lesquelles l'élève est confronté aux problèmes liés à l'organisation et gestion des données	1. Tableaux et graphiques croisés dynamiques MTIC 4.3 2. Collecte et traitement des données 3. Méthode de consolidation des données avec MS Excel MTIC 4.4 4. Élection du gouvernement des élèves 5. Identification des maladies endémiques (paludisme, trypanosomiase). 6. Méthode de validation des données avec MS Excel MTIC 4.5 7. Détermination de la date probable de l'ovulation au cours du cycle menstruel. 8. Approximations dans les mesures physiques. 9. Expressions de mesures expérimentales avec leurs erreurs 10. Détermination du volume d'un solide par la méthode de déplacement du liquide.

		11. Détermination expérimentale de la chaleur massique et spécifique d'une substance.
3.	Situations pour lesquelles l'élève est confronté aux problèmes liés à l'application de l'algorithmique et du codage	 Vérification de la véracité d'un énoncé Structures de contrôle mixtes MTIC 4.6 Comparaison des grandeurs Tableaux uni et multidimensionnels MTIC 4.7 Problèmes liés aux implications ou aux équivalences Algorithme de recherche simple et dichotomique MTIC 4.8 Algorithme de tri dans un tableau MTIC 4.9 Variation des températures Fonctions prédéfinies et procédures MTIC 4.10 Montage d'une préparation microscopique. Fichiers des données MTIC 4.11 Organisation d'une course à l'école, sur une distance donnée, pour mesurer les vitesses des élèves.

PARTIE 3: MATRICES DU PROGRAMME

1. SCIENCES PHYSIQUES / CHIMIE

MSPC 4.1 Structure des composes organiques

A. Savoirs essentiels : Isomérie

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel à des savoirs essentiels « *Isomérie* ».

C. Exemple de situation

Pendant la leçon sur l'isomérie en 4^e année scientifique au collège BOBOTO, monsieur NGOYI, enseignant des sciences physiques, amène ses élèves au laboratoire de chimie. Il les regroupe et leur donne un modèle moléculaire d'un composé organique hydrocarboné à six atomes de carbone. Il leur demande enfin de (d'):

- construire les configurations spatiales possibles de cette molécule
- représenter sur un papier ces différentes configurations
- écrire les différentes formules pour chaque composé.

D. Activités

(1) Isomérie de constitution

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Observer	le modèle moléculaire
Monter	d'autres modèles moléculaires à six atomes de carbone
Restituer	la définition de l'isomérie et des isomères
Citer	les deux types d'isoméries
Restituer	la définition de l'isomérie de constitution
Énumérer	les types d'isoméries de constitution

(2) Isomérie stérique

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition de la stéréo-isomérie et des stéréo-isomères
Citer	les deux grands types de stéréo-isomérie
Différencier	ico deux grando types de stereo-isomene
Énumérer	les types d'isomères de configuration
	les types d'isomères de conformation
Caractériser	les types d'isomères de configuration
	les types d'isomères de conformation

E. Évaluation

(1) Exemple d'items

- Définir les isomères
- Citer les deux types de stéréo-isomères
- Donner tous les isomères plans de la molécule : C₅H₁₂

(2) Situation similaire à traiter

Il est difficile de prédire la réactivité d'un composé organique à partir de sa formule brute uniquement si on ne connait pas la fonction organique à laquelle il appartient. Ainsi, pour que les élèves parviennent à identifier les différents isomères de fonction partant de la formule brute d'un composé, ils procèdent par l'écriture de différentes formules de structures possibles. Cette écriture tient compte de la tétra valence du carbone, de l'hétéroatome et de différentes fonctions chimiques organiques. A titre d'exemple, les isomères de fonction répondant à la formule brute C₃H₈O₂ sont :

- a) CH₃-O-CH₂-CH₃ (éther-oxyde) b) CH₃-CH₂-CH₂OH (alcool). Question: Identifier les isomères de fonction correspondant à la formule brute:
 - 1. C₃H₆O₂
 - 2. C₃H₆O

MSPC 4.2 Réactions organiques

F. Savoirs essentiels : Principaux types de réactions organiques G. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel à des savoirs essentiels « *Principaux types de réactions organiques*».

H. Exemple de situation

Lors d'une séquence didactique des sciences physiques en 2e année des humanités scientifiques au groupe scolaire LUBUYE à Kalemie, monsieur Kamulete donne des exemples de certaines réactions organiques: la combustion de l'acétylène dans le chalumeau oxyacétylénique, fermentation alcoolique, obtention du tétrachlorure de carbone à partir du méthane...La plupart des réactions organiques se réalisent grâce à des catalyseurs. L'enseignant, demande à ses élèves d'envisager d'autres réactions organiques et de les classifier.

I. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Expliquer	une réaction chimique organique
Classifier	les grands types de réactions organiques
Restituer	la définition d'une réaction de substitution, d'addition, d'élimination et de transposition
Schématiser	les quatre grands types de réactions organiques
Illustrer	
Énumérer	d'autres réactions organiques (oxydation,polymérisation)

J. Évaluation

(1) Exemple d'items

- Citer les quatre grands types de réactions organiques
- Schématiser : a) la réaction de substitution
 - b) la réaction d'addition

(2) Situation similaire à traiter

Réaliser l'oxydation de l'alcool éthylique(en solution) à l'aide d'une solution de dichromate de potassium en milieu acide sulfurique au laboratoire pour illustrer une réaction chimique organique.

MSPC 4.3 Analyse élémentaire

A. Savoirs essentiels : Principes d'analyse chimique élémentaire B.Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel à des savoirs essentiels « *Principes d'analyse chimique élémentaire*».

C.Exemple de situation

Lors de la leçon sur l'analyse élémentaire d'une substance organique, madame Joëlle KABWANG, enseignante des sciences physiques en 2e scientifique au Lycée SAB à Lubumbashi, amène ses élèves au laboratoire de chimie pour une manipulation. Ils réalisent la combustion du butane contenu dans une éprouvette. L'enseignante leur demande d'interpréter les phénomènes observés et de déterminer les éléments chimiques(atomes) constitutifs du butane.

D.Activités

(1) Combustion du butane

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Disposer	du matériel et des réactifs
Réaliser	la manipulation
Observer	les phénomènes lors de la manipulation
Expliquer	les phénomènes observés
Identifier	les produits de la combustion
Déterminer	les éléments chimiques constitutifs du butane
Élaborer	le protocole de la manipulation suivant le canevas de laboratoire

(2) Analyse élémentaire

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition de l'analyse élémentaire
Citer	les deux types d'analyse élémentaire
Différencier	l'analyse élémentaire qualitative de l'analyse élémentaire quantitative
Illustrer	quelques techniques d'identification des éléments chimiques dans un échantillon organique
Calculer	la masse molaire d'un composé organique
Déterminer	la formule brute d'un composé organique

E. Évaluation

(1) Exemple d'items

- Définir l'analyse élémentaire
- Citer les deux types d'analyse élémentaire

(2) Situation similaire à traiter

Détermination qualitative des éléments chimiques qui constituent le glucose par chauffage d'une quantité de ce sucre dans une éprouvette.

MSPC4.4 Hydrocarbures

A.Savoirs essentiels : Hydrocarbures saturés

B. Compétence :

Après avoir réalisé l'ensemble d'activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels «*Hydrocarbures* saturés»

C.Exemple de situation

Dans la ville de Moanda au Kongo Central en RD. Congo, on extrait du pétrole. Par curiosité l'élève Mputu de la 2^e année des humanités scientifiques à l'institut de Moanda a lu sur internet que le gisement du pétrole provient de la décomposition anaérobique des déchets organiques (végétaux et animaux), il y a des millions d'années. Ayant partagé cette information avec son professeur des sciences physiques en classe, ce dernier en a profité pour répercuter l'information auprès de ses élèves et leur demander d'expliquer la nature et la composition du pétrole.

D.Activités

(1) Les hydrocarbures saturés ou Alcanes

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Expliquer	la nature et la composition du pétrole
Restituer	la définition des hydrocarbures
Citer	les types d'hydrocarbures
Restituer	la définition des alcanes
Écrire	la formule générale des alcanes
Nommer	les alcanes (à chaine ouverte et à chaine cyclique)
Énumérer	les propriétés chimiques, physiques et l'usage des alcanes

E.Évaluation

(1) Exemples d'items

(2) Situation similaire à traiter

Réaliser le montage d'une distillation simple au laboratoire et procéder à la distillation du pétrole pour obtenir de l'éther de pétrole

MSPC4.5 Hydrocarbures

A.Savoirs essentiels : Hydrocarbures non saturés

B.Compétence

Après avoir réalisé l'ensemble d'activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels «*Hydrocarbures non saturés*».

C.Exemple de situation

L'enseignant Mulonda des sciences physiques de la 2^e année des humanités scientifiques de l'institut scientifique de selembao à Kinshasa, présente à ses élèves les structures de But -1 ène et de 3-méthyl pent -1- diyne. Il leur demande de:

- déterminer et caractériser les types d'insaturation possibles dans chaque chaine hydrocarbonée
- expliquer la réactivité chimique des hydrocarbures insaturés

D.Activités

(1) Les alcènes ou hydrocarbures éthyléniques

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition des alcènes
Écrire	la formule générale des alcènes
Nommer	les alcènes (à chaine ouverte et à chaine cyclique)
Énumérer	les propriétés chimiques, physiques et l'usage des alcènes.

(2) Les alcynes ou hydrocarbures acétyléniques

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition des alcynes
Écrire	la formule générale des alcynes
Nommer	les alcynes (à chaine ouverte et à chaine cyclique)
Énumérer	les propriétés chimiques, physiques et l'usage des alcynes.

E.Évaluation

(1) Exemples d'items

- Définir les hydrocarbures suivants : a) alcènes b) alcynes
- Nommer les composés ci-dessous :
 - a) $CH_2 = CH C \equiv CH$
 - b) $CH_3 CH_2 CH_2 CH = CH_2$

(2) Situation similaire à traiter

En visite guidée au laboratoire de Sep - Congo, les élèves de la 2° année des humanités scientifiques du collège IMARA constatent que sur les étiquettes de certaines bouteilles contenant des hydrocarbures insaturés ne sont indiquées que des formules de structure. Par la suite, leur enseignant des sciences physiques leur demande de nommer tous ces produits en utilisant les règles de nomenclature selon l'UIPAC.

Exemple: $CH_3 - C \equiv C - C \equiv CH$ penta-1, 3-diyne

Question: Partant de cette règle, nommez les hydrocarbures ci – dessous:

1.
$$CH \equiv C - CH_2 - CH_2 - C \equiv C - CH_2 - CH_3$$

2.
$$CH_2 = CH - CH_2 - CH_2 - CH = CH_2$$

MSPC4.6 Hydrocarbures

A.Savoirs essentiels: Hydrocarbures aromatiques

B.Compétence

Après avoir réalisé l'ensemble d'activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels « *Hydrocarbures aromatiques*».

C.Exemple de situation

Certains hydrocarbures appelés « hydrocarbures aromatiques » ont des caractéristiques particulières ; ils interviennent dans la préparation des teintures, parfums, médicaments, et explosifs. Présentant la formule de structure du benzène, prototype des composés aromatiques, monsieur Musa, enseignant des sciences physiques de la 2º année des humanités scientifiques au complexe scolaire Muinda, regroupe ses élèves, leur demande d'expliquer la structure, la préparation et les propriétés de cette molécule.

D.Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Observer	la structure du benzène
Restituer	la définition des hydrocarbures aromatiques
Expliquer	les différentes formules de structure du benzène
Déterminer	les modes de préparation du benzène
Énumérer	les propriétés du benzène
Nommer	les hydrocarbures aromatiques
Citer	quelques dérivés du benzène

E.Évaluation

(1) Exemples d'items

- Donner les différentes formules de structure du benzène
- Établir la formule de structure de : a) Toluène
 b) Phénol
 c) Aniline

(2) Situation similaire à traiter

Expliquer l'usage du benzène comme solvant organique dans certaines substances telles que le caoutchouc, le corps gras et le soufre.

MSPC 4.7 Fonctions chimiques organiques

A.Savoirs essentiels : Les halogénures d'alkyl

B.Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel à des savoirs essentiels « les halogénures d'alkyl».

C.Exemple de situation

La réaction d'halogénation d'un alcane est une réaction de substitution au cours de laquelle l'hydrogène est remplacé par l'halogène. L'enseignant des sciences physiques au collège st Cyprien à Kinshasa/Ngaliema, Rodrigue LUTUMBA, réalise la réaction du méthane avec le dichlore au laboratoire avec ses élèves de la 2e année des humanités scientifiques. Il leur demande enfin de donner les produits possibles de cette réaction, de les nommer et de les caractériser.

D.Activités

(1) Chloration du butane

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Citer	les différents produits de réaction entre le butane et le dichlore
Déceler	les caractéristiques de ces composés
Nommer	ces composés
Identifier	la fonction organique à laquelle appartiennent ces composés

(2) Les halogénures d'alkyl

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition des halogénures d'alkyl
Citer	les types d'halogénures d'alkyl et leurs formules générales respectives
Nommer	les halogénures d'alkyl
Énumérer	les propriétés physiques des halogénures d'alkyl
	les propriétés chimiques des halogénures d'alkyl
Déterminer	l'usage des halogénures d'alkyl

E.Évaluation

- (1) Exemple d'items
- Définir un halogénure d'alkyl
- Citer les types d'halogénures d'alkyl
- Nommer les hydrocarbures halogénés suivants : a) CH₃-CH₂I b) CH₃-CHF-CH₂F
- (2) Situation similaire à traiter

Donner les différentes réactions aboutissant à la synthèse du tétrachlorure de carbone(CCl₄), utilisé comme extincteur d'incendie.

MSPC 4.8 Fonctions chimiques organiques

A.Savoirs essentiels : Fonctions oxygénées et soufrées à carbone fonctionnel monovalent

B.Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel à des savoirs essentiels « Fonctions oxygénées et soufrées à carbone fonctionnel monovalent».

C.Exemple de situation

La laborantine Françoise Mputu, du collège St Laurent de Kisantu dans le Kongo-Central ne parvient pas à préparer certaines solutions par manque de certains solvants organiques. Elle recourt à l'enseignant des sciences physiques de la 2e année des humanités scientifiques, qui à son tour regroupe ses élèves en leur présentant des isomères des différents solvants à fonctions oxygénées à carbone fonctionnel monovalent et leur demande de (d'):

- identifier le carbone fonctionnel dans chaque isomère et sa valence;
- préciser la fonction chimique à laquelle appartient chaque isomère;
- écrire les formules semi-développées des isomères de fonction;
- choisir ceux qui servent de solvant dans la préparation des solutions au laboratoire.

D.Activités

(1) Identification des isomères de fonction

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Établir	les différentes formules semi-développées partant des formules brutes
Identifier	le carbone fonctionnel dans chaque isomère
Préciser	la fonction chimique à laquelle appartient chacun des isomères
Déterminer	la valence du carbone fonctionnel dans chaque isomère

(2) Les Alcools

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'un alcool
Établir	la formule générale des alcools
Énumérer	les types d'alcools
Nommer	les alcools
Énumérer	les propriétés physiques des alcools
	les propriétés chimiques des alcools
Déterminer	l'usage des alcools

(3) Les thiols

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'un thiol
Établir	la formule générale des thiols
Nommer	les thiols
Énumérer	les propriétés physiques des thiols
	les propriétés chimiques des thiols
Déterminer	l'usage des thiols

(4) Les Éthers-oxydes

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'un éther-oxyde
Établir	la formule générale des éthers-oxydes
Citer	les types d'éthers
Nommer	les éthers
Énumérer	les propriétés physiques des éthers
	les propriétés chimiques des éthers
Déterminer	l'usage des éthers

E.Évaluation

(1) Exemple d'items

- Définir : a) un alcool b) un éther-oxyde
- Citer les types d'éthers
- Nommer les composés organiques suivants :
 - CH₃-CH₂OH;
 - CH₃-CH₂-CH₂SH
 - CH₃-O-CH₃

(2) Situation similaire à traiter

Le laboratoire de chimie du collège St Alphonse vient d'être approvisionné en produits organiques contenus dans des bouteilles. Ces dernières portent des étiquettes indiquant le nom de chaque produit. Pour faciliter l'utilisation desdits produits, les élèves doivent ajouter la formule brute à chaque étiquette. Toutefois, l'établissement de la formule brute passe par l'écriture de la formule de structure, en respectant la tétravalence du carbone. C'est le cas de l'éthanol dont la formule de structure est CH_3-CH_2OH et la formule brute C_2H_6O

Questions:

- 1. La formule brute de l'isobutanol est :
 - a) C_4H_8O b) $C_4H_{10}O$ c) C_3H_8O d) C_3H_6O
- 2. La formule brute de dipropyléther est :
 - a) C_3H_8O b) $C_5H_{12}O$ c) $C_6H_{12}O$ d) $C_6H_{14}O$

MSPC 4.9 Fonctions chimiques organiques

A.Savoirs essentiels : Fonctions oxygénées à carbone fonctionnel bivalent

B.Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel à des savoirs essentiels « Fonctions oxygénées à carbone fonctionnel bivalent».

C.Exemple de situation

Lors d'une visite guidée au laboratoire d'une usine de fabrication des produits cosmétiques à Kinshasa, les laborantins de cette usine éprouvent des difficultés pour oxyder l'éthanol et l'isopropanol. Ils se réfèrent à M. Pungwe, l'enseignant des sciences physiques du Groupe Scolaire Lubuye. Ce dernier regroupe ses élèves de la 2^e année des humanités scientifiques, leur remet deux éprouvettes contenant respectivement l'éthanol et l'isopropanol. A partir du mode opératoire, les élèves procèdent à oxyder les deux alcools par le bichromate de potassium en présence de l'acide sulfurique. Par la suite, ils doivent expliquer la démarche scientifique suivie, les phénomènes observés et identifier les produits des réactions dans les deux éprouvettes.

D.Activités

(1) Oxydation de l'éthanol et de l'isopropanol

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Ajouter	une quantité de dichromate de Potassium et quelques gouttes d'acide sulfurique dans les deux tubes contenant des alcools
Secouer	les mélanges pour rendre la solution homogène
Chauffer	les deux tubes
Observer et expliquer	les réactions dans les deux tubes
Identifier	les produits des réactions.

(2) Les aldéhydes

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'un aldéhyde
Établir	la formule générale des aldéhydes
Nommer	les aldéhydes
	les propriétés physiques des aldéhydes
Énumérer	les propriétés chimiques des aldéhydes
Déterminer	l'usage des aldéhydes.

(3) Les cétones

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'une cétone
Établir	la formule générale des cétones
Nommer	les cétones
	les propriétés physiques des cétones
Énumérer	les propriétés chimiques des cétones
Déterminer	l'usage des cétones.

E.Évaluation

- (1) Exemple d'items
- Définir un aldéhyde
- Donner la formule générale des cétones
- Nommer les composés organiques suivants :
 - a) CH₃-CHO
- b) CH₃-CH₂-CO-CH₃

(2) Situation similaire à traiter

Préparer le formol au laboratoire pour la conservation des insectes capturés en vue d'une étude ultérieure en SVT.

MSPC 4.10 Fonctions chimiques organiques

A.Savoirs essentiels : Fonctions oxygénées à carbone fonctionnel trivalent

B.Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel à des savoirs essentiels « Fonctions oxygénées à carbone fonctionnel trivalent».

C.Exemple de situation

Le lycée Tuendelee de Lubumbashi vient de réceptionner un lot de produits chimiques. Ces derniers portent des étiquettes des formules chimiques des composés organiques oxygénés à carbone fonctionnel trivalent. Pour les classer au laboratoire, M. Jean Tshimanga enseignant des Sciences Physiques place ses élèves de la 2^e année des humanités scientifiques en sous-groupe, leur demande d'identifier la fonction chimique de chacun de ces composés, la valence du carbone fonctionnel, les similitudes et les différences entre ces composés.

D.Activités

(1) Identification des fonctions

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Indiquer	la fonction chimique à laquelle appartient chaque composé
Identifier	le carbone fonctionnel
Déterminer	la valence du carbone fonctionnel
Déceler	les similitudes et les différences entre les quatre composés

(2) Les acides carboxyliques

Actions (de l'élève)	Contenus (sur lesquels portent les actionsn de l'élève)
Restituer	la définition d'un acide carboxylique
Établir	la formule générale des acides carboxyliques
Citer	les types d'acides carboxyliques
Nommer	les acides carboxyliques
	les propriétés physiques des acides carboxyliques
Énumérer	les propriétés chimiques des acides carboxyliques
Déterminer	l'usage des acides carboxyliques

(3) Les esters

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'un ester
Établir	la formule générale des esters
Nommer	les esters
	les propriétés physiques des esters
Donner	les propriétés chimiques des esters
Déterminer	l'usage des esters

(4) Les chlorures d'acides

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'un chlorure d'acide
Établir	la formule générale des chlorures d'acides
Nommer	les chlorures d'acides
	les propriétés physiques des chlorures d'acides
Énumérer	les propriétés chimiques des chlorures d'acides
Déterminer	l'usage des chlorures d'acides

(5) Les anhydrides d'acides

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'un anhydride d'acide
Établir	la formule générale des anhydrides d'acides
Citer	les types des anhydrides d'acides
Nommer	les anhydrides d'acides
	les propriétés physiques des anhydrides d'acides
Énumérer	les propriétés chimiques des anhydrides d'acides
Déterminer	l'usage des anhydrides d'acides

E.Évaluation

- (1) Exemple d'items
- Définir un acide carboxylique et un ester
- Donner la formule générale des chlorures d'acides
- Nommer les composés organiques suivants :
 - CH₃-COOH
 - CH₃-CH₂-COO-CH₃
- (2) Situation similaire à traiter

Préparer du savon respectivement avec de l'huile de palme, l'huile d'arachide, l'huile palmiste et opérer enfin le choix d'une bonne huile à utiliser dans la saponification.

MSPC 4.11 Fonctions chimiques organiques

A.Savoirs essentiels : Fonctions azotées

B.Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel à des savoirs essentiels « **Fonctions azotées** ».

C.Exemple de situation

Pendant la séquence didactique de SVT en 2^e année des humanités scientifiques au collège Mater Dei de Kinshasa, les élèves ont appris que l'Urée utilisé dans le potager de l'école contient de l'Azote dans sa formule de structure. Curieux, ils abordent leur enseignant de sciences physiques, pour en connaître d'autres produits organiques contenant de l'azote. L'enseignant leur présente des amines (produits de la fermentation des matières organiques azotées), les nitriles et les amides. Partant des formules de structure de ces composés azotés, l'enseignant demande à ses élèves d'identifier pour chaque fonction, le carbone fonctionnel et sa valence, la

D.Activités

(1) Les amines

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'une amine
Établir	la formule générale des amines
Citer	les types d'amines
Nommer	les amines
	les propriétés physiques des amines
Énumérer	les propriétés chimiques des amines
Déterminer	l'usage des amines

(2) Les amides

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
----------------------	--

Restituer	la définition d'un amide
Établir	la formule générale des amides
Nommer	les amides
	les propriétés physiques des amides
Énumérer	les propriétés chimiques des amides
Déterminer	l'usage des amides

(3) Les nitriles

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'un nitrile
Établir	la formule générale des nitriles
Nommer	les nitriles
	les propriétés physiques des nitriles
Énumérer	les propriétés chimiques des nitriles
Déterminer	l'usage des nitriles

E.Évaluation

(1) Exemple d'items

- Définir une amine
- Donner la formule générale des nitriles
- Nommer les composés organiques suivants : CH₃-CONH₂; CH₃-CH₂-CH₂NH₂; CH₃-CN

(2) Situation similaire à traiter

Expliquer le caractère basique des amines en solution aqueuse à partir du groupement NH₂ qu'ils contiennent.

MSPC 4.12 Réactions chimiques inorganiques

A.Savoirs essentiels : Réactions ioniques

B.Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel à des savoirs essentiels « *Réactions ioniques*»

C.Exemple de situation

L'enseignante Ngalula des sciences physiques à l'Institut Rwakading à Kinshasa amène ses élèves de la 2e année des humanités scientifiques au laboratoire de chimie pour une manipulation. Pour attirer la curiosité des élèves, elle effectue un mélange d'une solution de chlorure de baryum (BaCl₂) et d'acide sulfurique (H₂SO₄) et obtient un précipité blanc de sulfate de baryum. Par la suite, elle demande à ses élèves d'effectuer d'une part le mélange d'une solution de nitrate d'argent (AgNO₃) et d'une solution de chlorure de sodium (NaCl) et d'autre part le mélange d'une solution de carbonate de calcium (CaCO₃) et d'une solution d'acide chlorhydrique (HCl). Enfin, les élèves devront observer, interpréter les réactions qui se déroulent et en identifier les produits.

D.Activités

(1) Manipulation

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Observer	les solutions avant le mélange
Mélanger	les solutions
Observer	le déroulement des réactions
Distinguer	les produits des réactions.
Interpréter	

(2) Réaction ionique

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition d'une réaction ionique
Écrire	l'équation de dissociation d'un composé
	une équation ionique
Citer	les types de réactions ioniques
Expliquer	la réaction de précipitation, la volatilisation et la réaction acide-base

Énoncer	la règle de Berthollet
---------	------------------------

E.Évaluation

- (1) Exemple d'Items
 - Citer les types de réactions ioniques
 - Énoncer la règle de Berthollet

(2) Situation similaire à traiter

Les élèves de la 2^e année des humanités scientifiques doivent expliquer et interpréter les réactions ioniques (acide-base) qu'ils réalisent au laboratoire lors de diverses manipulations ou dans leur milieu de vie. Pour donner les produits de ces réactions, il suffit de dissocier chaque composé (électrolyte) intervenant dans la réaction, de faire la recombinaison des ions pour former des composés selon la loi d'attraction électrostatique en tenant compte de la valence de chaque ion.

Exemple:

NaOH + HCI
$$\longrightarrow$$
 Na⁺ + OH⁻ + H⁺ + Cl⁻ \longrightarrow NaCl + H₂O

Question : Donner les produits des réactions suivantes :

MSPC4.13 Réactions chimiques inorganiques

A.Savoirs essentiels : Réactions d'oxydo-réduction

B.Compétence:

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, les situations faisant appel à des savoirs essentiels « **Réactions d'oxydo-réduction**».

C.Exemple de situation

Lors d'une expérience au laboratoire de chimie au Complexe scolaire La borne de Kinshasa, l'enseignant Kabasele de la 2^e année des humanités

scientifiques présente à ses élèves deux béchers, l'un contenant une solution de sulfate de cuivre et l'autre une solution de sulfate de zinc, une lame de zinc décapée et une lame de cuivre. Il leur demande de réaliser, d'interpréter l'expérience et expliquer le phénomène d'oxydation et de réduction.

D.Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Plonger	la lame de zinc décapé dans la solution de sulfate de cuivre
	la lame de cuivre dans la solution de sulfate de zinc
Observer	les réactions
Établir	les équations d'oxydation, de réduction et redox
	la définition de réaction d'oxydation et de réduction
Restituer	la définition de l'étage d'oxydation et d'une réaction d'oxydo- réduction
Énoncer	les règles pour assigner les nombres d'oxydation
Calculer	le nombre d'oxydation des éléments
Différencier	un oxydant d'un réducteur
Équilibrer	les équations redox par la méthode des nombres d'oxydation et par la méthode des demi- équations rédox

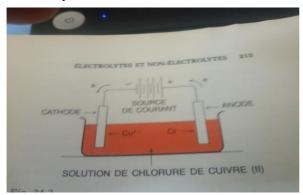
E.Évaluation

- (1) Exemple d'items :
- Calculer l'étage d'oxydation de : a) Mn dans MnO₄
 - b) I dans IO-3
 - c) P dans Mg₃(PO₄)₂
- Indiquer l'oxydant et le réducteur dans l'équation suivante:

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

(2) Situation similaire à traiter

Utilisation de l'acide sulfurique en bijouterie pour tester la pureté des bijoux en or


MSPC 4.14 Application des réactions REDOX

A.Savoirs essentiels : Électrolyse

B.Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel à des savoirs essentiels « *Électrolyse*»

C.Exemple de situation

Lors d'une manipulation laboratoire au des sciences physiques au collège Boboto, l'enseignant Muadi organise ses élèves de 2^e année des humanités scientifiques en sous-groupes, leur remet le matériel, les

réactifs nécessaires et leur demande de réaliser l'électrolyse de chlorure de cuivre en milieu aqueux suivant le schéma ci-contre. Les élèves doivent écrire les équations chimiques au niveau des électrodes, donner le bilan de l'électrolyse et expliquer la démarche scientifique suivie.

D.Activités

(1) Électrolyse du chlorure de cuivre

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Rassembler	le matériel et les produits à utiliser
Remplir	le vase de Berlin d'une solution diluée de chlorure de cuivre
Plonger	deux électrodes en graphite dans la solution
Raccorder	les électrodes aux bornes d'un générateur de courant continu
Observer	les phénomènes qui se déroulent au niveau de chaque électrode
Noter	les observations

(2) Électrolyse

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition de l'électrolyse, électrolyte, électrolyseur
Décrire	un électrolyseur
Expliquer	le principe de l'électrolyse
Écrire	les demi-équations redox et le bilan de l'électrolyse
Énoncer	les lois de Faraday
Établir	la formule des lois de Faraday
Effectuer	les calculs de l'intensité du courant ou des masses déposées lors d'une électrolyse
Différencier	l'électrolyse ignée de l'électrolyse en solution aqueuse

E.Évaluation

- (1) Exemple d'Items
- Définir l'électrolyse
- Décrire un électrolyseur
- Quels sont les produits de l'électrolyse du chlorure de cuivre

(2) Situation similaire à traiter

Préparer de l'eau de javel à partir l'électrolyse de chlorure de sodium en solution aqueuse, comme produit de nettoyage des linges sales dans les ménages.

MSPC4.15 Préparation de l'eau de javel

A.Savoirs essentiels : Produits de nettoyage et de désinfection B.Compétence :

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, les situations faisant appel à des savoirs essentiels «Produits de nettoyage et de désinfection».

C.Exemple de situation

A l'institut de Kindu dans la province du Maniema, les chemises blanches (uniformes) des élèves du cycle terminal de l'EB ont perdu leur éclat. En préparation des épreuves du cycle terminal de l'EB, le préfet de cette école fait recourt à l'enseignant des sciences physiques pour trouver solution au blanchissement de ces uniformes. L'enseignant saisit l'occasion, remet le mode opératoire à ses élèves de la 2^e année des humanités scientifiques et leur demande de préparer l'eau de javel pour le nettoyage de ces uniformes.

D.Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition de l'eau de Javel
Rassembler	le matériel et les produits à utiliser
Préparer	une solution de soude (NaOH) à 20 % dans un ballon
Dissoudre	le chlore (Cl ₂) dans la solution aqueuse de NaOH à 20%
Fermer	hermétiquement le ballon contenant l'eau de javel
Étiqueter	le ballon contenant le produit
Utiliser	le produit obtenu

E.Évaluation

(1) Exemple d'items :

- Reproduire le protocole de préparation de l'eau de javel.
- Énumérer les produits utilisés dans la préparation de l'eau de javel

(2) Situation similaire à traiter

Les cuves de toilettes de l'école sont très sales. Pour les blanchir, l'enseignant des sciences physiques remet à ses élèves de 2e année des humanités scientifiques, le protocole de préparation de l'esprit de sel. Ces derniers doivent préparer ce produit et le remettre au nettoyeur des toilettes.

MSPC4.16 Préparation de l'eau de dakin

A.Savoirs essentiels : Produits de nettoyage et de désinfection B.Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, les situations faisant appel à des savoirs essentiels «Produits de nettoyage et de désinfection».

C.Exemple de situation

Lors d'un championnat interclasses de football à l'institut de Butembo dans le Nord-Kivu, l'élève Kambale de la 2e année des humanités scientifiques s'est blessé à la jambe gauche. Ses collègues l'amènent au dispensaire de l'école pour le traitement. Au dispensaire, l'infirmier constate que l'eau de dakin qu'il utilisait comme antiseptique est quasiment terminée. Après traitement de l'élève, le lendemain, l'infirmier recourt à l'enseignant de sciences physiques pour refaire le stock. Au laboratoire de chimie, ce dernier remet à ses élèves le mode opératoire, le matériel, les réactifs et leur demande de préparer le produit.

D.Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition de l'eau de Dakin
Énumérer	les produits et matériel à utiliser dans la préparation du Dakin
Verser	l'eau distillée dans un ballon jaugé
Ajouter	le bicarbonate et le Javel du commerce à l'eau distillée
Agiter	le ballon pour homogénéiser la solution
Colorer	très légèrement avec le permanganate de potassium
Compléter	l'eau distillée jusqu'au trait de jauge
_	hermétiquement le ballon contenant le produit obtenu
Étiqueter	le ballon contenant le produit
Utiliser	le produit obtenu

E.Évaluation

(1) Exemple d'items :

- Énumérer les réactifs et matériel utilisés dans la préparation du Dakin.
- Reproduire le protocole de préparation du Dakin.

(2) Situation similaire à traiter

A l'institut MOBOMA, beaucoup d'élèves se blessent pendant la récréation suite à des jeux violents. Comme l'école ne dispose pas de dispensaire, l'enseignant des sciences physiques demande à ses élèves de 2e année des humanités scientifiques de préparer le mercurochrome qui servira à la désinfection des plaies; il leur remet un protocole de travail à cet effet.

MSPC4.17 Préparation du savon

A.Savoirs essentiels : Produits de nettoyage et de désinfection B.Compétence :

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, les situations faisant appel à des savoirs essentiels «Produits de nettoyage et de désinfection».

C.Exemple de situation

La buanderie de l'internat de l'institut Chololo de Kisangani dans la province de la Tshopo connait une rupture de stock en savon de lessive. Le directeur de l'internat consulte monsieur Sébastien Mbayo, enseignant des sciences physiques dudit institut pour une solution à ce problème. Le lendemain, au séquence cours de la des sciences physiques, monsieur Mbayo, place ses élèves de la 2^e année des humanités scientifiques en sous-groupes au laboratoire de chimie, et leur demande de préparer du savon dur tout en leur remettant le mode

D.Activités

(1) Blanchissement de l'huile de palme

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Restituer	la définition du savon
Rassembler	le matériel et les produits nécessaires à la fabrication du savon
Blanchir	l'huile de palme
Laisser	reposer l'huile chauffée

(2) Préparation de la solution de soude et saponification

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Verser	l'eau dans un seau en plastique
Ajouter	lentement la soude à l'eau
Agiter	pour dissoudre complètement la soude
Reposer	la solution pendant quelque temps
Verser	progressivement la solution de soude dans l'huile de palme
Agiter	régulièrement dans un même sens jusqu'à la formation de la pâte savonneuse
Ajouter	une solution de sel de cuisine à la pâte savonneuse
Couler	la pâte obtenue dans des moules
Sécher	la pâte à l'air libre
Couper	le savon
Utiliser	

E.Évaluation

(1) Exemple d'items :

- Citer les produits chimiques et matériels utilisés dans la préparation du savon.
- Restituer le mode opératoire de préparation de solution de soude.

(2) Situation similaire à traiter

Dans le but de trouver solution à la rareté du savon dur (savon sodique) dans leur contrée, les élèves de 2e année des humanités scientifiques au lycée Bima, devront préparer du savon mou (savon potassique) en suivant le protocole leur remit par leur enseignant des sciences physiques.

2. SCIENCES PHYSIQUES / PHYSIQUE

MSP 4.1 Modes de transmission de la chaleur

A.Savoirs essentiels

Conduction-convection – rayonnement de la chaleur

B.Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : « conduction –convection –rayonnement de la chaleur ».

C.Exemple de situation

Les élèves Mutombo et Mbombo de la 2ème année des humanités scientifiques du collège Saint Mukasa doivent traverser la voie ferrée, dans la commune de Matete, à Kinshasa. Ils en profitent pour apprécier la température du rail en le touchant. Le rail est très froid. A leur retour de l'école, ils remarquent avec surprise que la main brûle littéralement en touchant le même rail. Ils en parlent à leur prof Mihalo. Pour aider ses élèves à bien comprendre ce phénomène, le professeur leur présente la série de manipulations ci-dessous à réaliser :

- ➤ Manipulation 1 : mettre au feu une barre de fer et tenir en main l'autre bout de 5 à 10 minutes :
- Manipulation 2 : mettre au feu une casserole à manches en bois contenant de l'eau dans laquelle on a ajouté un peu de sciure de bois
- Manipulation 3 : se mettre autour du feu à une distance convenable pour se réchauffer.

L'enseignant demande aux élèves de noter et interpréter les phénomènes observés.

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
Saisir	le bout de la barre de fer non en contact avec le feu	
Constater	la transmission de la chaleur à travers la barre de fer au cours du temps	
Tenir	à mains nues pendant l'ébullition de l'eau : les bords de la casserole les manches de la casserole	
Constater	la transmission de la chaleur à travers les manches et les bords de la casserole	

Restituer	la définition de la conduction
-----------	--------------------------------

Activité 2 : Transfert thermique par convection et par rayonnement

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
Verser	de l'eau dans la casserole	
Ajouter	un peu de sciure de bois dans l'eau contenue dans la casserole	
Placer	la casserole et son contenu sur le foyer	
Observer	le mouvement de la sciure de bois jusqu'à l'ébullition de l'eau	
S'approcher	du foyer à une distance convenable de manière à sentir la chaleur	
Restituer	la définition du rayonnement et celle de la convection	

E.Évaluation

(1) Exemples d'items

- 1. Définir :
- a) la conduction thermique
- b) la convection thermique
- c) le rayonnement thermique
- 2. Différencier le rayonnement thermique de la conduction et de la convection thermiques

(2) Situation similaire à traiter

Rechercher dans votre environnement les applications pratiques de mode de transfert de la chaleur.

MSP 4.2 Isolation thermique

A. Savoir essentiel

Le thermos

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel au savoir essentiel « le thermos »

C. Exemple de situation :

L'enseignant de 2ème des humanités scientifiques présente à ses élèves un thermos. Il leur demande :

- d'énoncer le principe de fonctionnement du thermos,
- d'identifier et de schématiser ses différentes parties.

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Disposer	de la bouteille isotherme appelée thermos
Démonter	la bouteille
Indiquer	ses différentes parties
Monter	la bouteille
Expliquer	son principe de fonctionnement

E. Évaluation

(1) Exemples d'items

- a. Citer les facteurs qui favorisent la dissipation de la chaleur dans une bouteille thermique.
- b. Schématiser le thermos et indiquer ses différentes parties

(2) Situation similaire à traiter

Conserver un liquide chaud ou froid dans un thermos pendant une durée donnée pour déterminer la variation de la température.

MSP 4.3 Quelques échelles thermométriques

A. Savoirs essentiels:

Échelles Celsius - Kelvin (Absolue) - Fahrenheit.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel aux savoirs essentiels : « Échelles Celsius – Kelvin (Absolue) - Fahrenheit »

C. Exemple de situation

En visite guidée dans un hôpital, les élèves de 2^e année des humanités scientifiques découvrent un thermomètre médical à double échelle dont les repères fixes portent les mentions 36°C / 96,8°F et 42°C/107,6°F. Simultanément, l'infirmier communique à un malade que sa température est de 37 degrés sans toutefois préciser s'il s'agit de °C ou °F. L'enseignant demande à ses élèves de préciser à l'aide du même thermomètre s'il s'agit de 37°C ou de 37°F. De retour en classe, il leur demande de compléter le tableau suivant et de faire la correspondance entre différentes échelles qui y figurent.

	REPERES FIXES		
ECHELLES	GLACE	VAPEUR D'EAU	GRADUATION
CELSIUS	0°C	100°C	100
KELVIN	273 K	373 K	100
FAHRENHEIT	32°F	212°F	180
REAUMUR	0°R	80°R	80

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Restituer	la définition de la thermométriela définition de la température d'un corps
Préciser	 à l'aide du thermomètre à double échelle, la température du malade sur l'échelle : Celsius Fahrenheit
Déterminer	la division de chaque échelle du thermomètre médical à double échelle
Comparer	les deux divisions
Compléter	le tableau
Établir	 la correspondance entre différentes échelles thermométriques du tableau la relation générale de correspondance entre les quatres échelles thermométriques du tableau

E. Évaluation

(1) Exemples d'items

- 1. Citer les deux corps de référence qui servent à établir une échelle thermométrique.
- 2. Donner le point commun pour les échelles Celsius et Kelvin.
- 3. Indiquer le type d'échelle utilisée dans les pays :
 - a) Francophones
 - b) Anglophones

(2) Situation similaire à traiter

Quatre élèves malades de la 2^e année des humanités scientifiques : Mpunga Jonathan, Tshiela Déborah, Muamba Maranatha et Musuamba Délic sont reçus au dispensaire par deux infirmières disposant des thermomètres d'échelles différentes, l'un à échelle Celsius et l'autre à échelle Fahrenheit. Voici un tableau indiquant les températures corporelles prélevées de ces quatre patients:

PATIENT	VALEUR THERMOMÉTRIQUE PRÉLERVÉE				
Jonathan	36 °C				
Déborah	102,2 °F				
Maranatha	98,6 °F				
Délic	38°C				

QUESTION

Le classement croissant correct des patients selon leurs températures est :

- 1. Jonathan Maranatha Délic Déborah
- 2. Maranatha Jonathan Délic Déborah
- 3. Délic Déborah- Jonathan Maranatha
- 4. Déborah Maranatha- Délic Jonathan.

MSP 4.4 Quelques thermomètres usuels

A. Savoirs essentiels

Thermomètres à mercure.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : « Thermomètres à mercure ».

C. Exemple de situation

En prévision de la leçon sur le thermomètre, les élèves de la 2^{ème} année des humanités scientifiques apportent différents thermomètres à mercure en classe pour des activités d'observation et de manipulation. L'enseignant soumet ces élèves à une série d'activités qui vont de l'identification de l'instrument, du prélèvement de la température à la différenciation de types de thermomètres.

D. Activités

1. Thermomètre à mercure

Actions (de l'élève)	Contenus (sur lesquels portent les actions)			
Observer	les différents thermomètres apportés en classe			
Identifier	les différentes parties d'un thermomètre à mercure			
	les liquides contenus dans le thermomètre			
Disponibiliser	 les récipients simples : pots en verre ou en plastique les moyens de chauffage les glaçons 			
Chauffer	l'eau			
Immerger	le réservoir du thermomètre ou la partie sensible dans l'eau chaude			
Prélever	la température de (l'eau qui bout) indiquée par les graduations			
Refaire	l'expérience avec l'eau glacée ou la glace qui fond			
Lire	la température indiquée par les graduations			

2. Thermomètre médical

Actions (de l'élève)	Contenus (sur lesquels portent les actions)				
Observer	le thermomètre médical				
Identifier	le liquide à l'intérieur du réservoir				
Décrire	le fonctionnement du thermomètre médical				
Énumérer	les différentes places où l'on peut poser le thermomètre				
Déterminer	la plage d'utilisation du thermomètre médical				
Prélever	la température des corps de quelques élèves				
Schématiser	un thermomètre médical				

E. Évaluation

(1) Exemples d'items

- 1. Schématiser un thermomètre médical et indiquer ses différentes parties.
- 2.Expliquer pourquoi on doit secouer le thermomètre médical à mercure après chaque usage.
- 3. Justifier la présence de l'étranglement qui se trouve au-dessus du réservoir du thermomètre médical à mercure.

(2) Situation similaire à traiter

L'enseignant MUYEMBE demande à ses élèves de faire une recherche documentaire (bibliothèque ou l'Internet) pour identifier les types de thermomètres médicaux tout en indiquant leurs applications sur le corps humain et d'autres thermomètres utilisés dans certains domaines en indiquant leur plage d'utilisation.

MSP4.5 Dilatation thermique des solides

A. Savoirs essentiels

Dilatation linéaire, superficielle et cubique des solides

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel aux savoirs essentiels : « Dilatation linéaire, superficielle et cubique des solides »

C. Exemple de situation

Sur la route menant à l'école, les élèves Mesu et Tshinguta de la 2^e année des humanités scientifiques du collège ABC traversent la voie ferrée, dans la commune de Matete, à Kinshasa. Ils en profitent pour faire passer une courte tige métallique dans l'espace séparant deux barres voisines du rail. A leur retour de l'école, il fait très chaud,les deux élèves remarquent avec surprise que la tige n'entre plus dans le même espace du rail. Ils en parlent à leur enseignant KALAMBAYI. Pour aider ses élèves à bien comprendre ce phénomène, le professeur leur présente le matériel ci-dessous :

- un braisier allumé
- un fil en cuivre de 30 cm de longueur et de 2 mm de diamètre tendu horizontalement à ses extrémités sur deux tiges en bois piquées au sol ;
- un petit cadre métallique rectangulaire contenant dans sa rainure et une petite plaque métallique de faible épaisseur, facilement détachable ;
- un anneau métallique à travers lequel passe facilement une boule métallique suspendue à un fil métallique.

Il leur demande ensuite de chauffer le matériel et interpréter le phénomène observé.

D. Activités

1. Dilatation linéaire

Actions (de l'élève)	Contenus (sur lesquels portent les actions)					
Restituer	la définition de la dilatation					
Repérer	la température du fil en cuivre non chauffé					
Mesurer	la longueur (L₀) du fil non chauffé					
Chauffer	le fil métallique					
Repérer	la température du fil chauffé					
Mesurer	la longueur L du fil chauffé					
Observer	la forme du fil					
Déterminer	l'allongement ΔL du fil de cuivre					
Restituer	la définition de la dilatation linéaire					
Établir	les paramètres dont dépend la dilatation linéaire d'un corps					
	la formule de dilatation liée à ces paramètres					

2. Dilatation surfacique

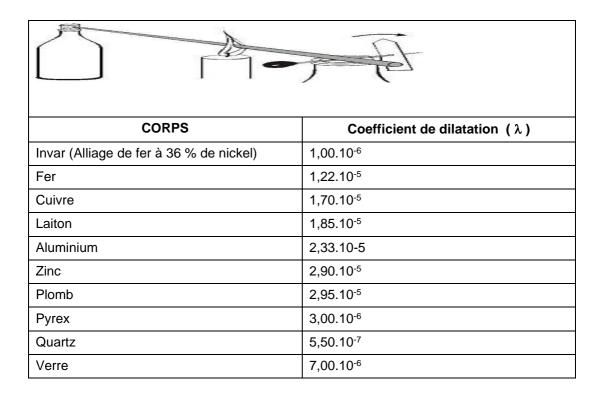
Actions (de l'élève)	Contenus (sur lesquels portent les actions)							
Mesurer	les dimensions (longueur L_{o} et largeur l_{o}) de la plaque métallique non chauffée							
Calculer	la surface S₀ de la plaque métallique non chauffée							
Chauffer	la plaque							
Mesurer	les dimensions (L et l) de la plaque métallique chauffée							
Restituer	la définition de la dilatation surfacique							
Calculer	la surface S de la plaque métallique chauffée							
	l'accroissement de la surface ΔS de la plaque							

3. Dilatation volumique

Actions (de l'élève)	Contenus (sur lesquels portent les actions)				
Mesurer	le rayon intérieur de l'anneau non chauffé				
iviesurei	le rayon R₀ de la boule non chauffée				
Calculer	le volume V₀ de la boule non chauffée				
Introduire	la boule non chauffée dans l'anneau				
Chauffer	fortement la boule				
Mesurer	le rayon R de la boule chauffée				
Calculer	le volume V de la boule chauffée				
Introduire	la boule chauffée à travers l'anneau				
Observer	le phénomène				
Expliquer	pourquoi la boule chauffée ne passe pas à travers l'anneau				
Restituer	la définition de la dilatation volumique				
Déterminer	l'accroissement du volume				

E. Évaluation

(1) Exemples d'items


- 1. Définir les concepts :
 - a) dilatation d'un corps
 - b) contraction d'un corps
- 2. Établir la différence entre dilatation et contraction d'un corps
- 3. Donner la signification physique de Lo, L, λ , θ et θ_o contenus dans la formule :

$$\Delta L = L - L_0 = \lambda . L_0 . \Delta \theta$$
; avec $\Delta \theta = \theta - \theta_0$

4. Expliquer pourquoi les tôles d'une toiture craquent lorsqu'il fait très chaud.

(2) Situation similaire à traiter

Pour concrétiser le phénomène de dilatation des solides, le professeur de la 2ème année des humanités scientifiques du Collège DIBUA DIA BUAKANE de MBUJI-MAYI, demande à ses élèves de fabriquer le dilatomètre en exploitant le croquis ci-dessous et de faire une étude approfondie de ce phénomène, en variant progressivement la longueur, la nature de la tige à chauffer ainsi que la température de chauffage. Il leur présente le tableau ci-dessous de coefficients de dilatation linéaire de quelques corps solides :

Les élèves devront pour cela :

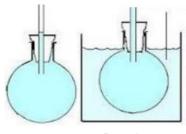
- coller un cadran (au pointeur et sur la tige horizontale en rotation) avec ses chiffres croissant dans le sens (de l'horloge) de la flèche indiquée
- placer une tige (courte, longue, en fer, en cuivre) à travers la/les flamme(s) d'une ou plusieurs bougies allumées
- prélever le nombre θ_1 de divisions du cadran atteint par le pointeur (dans sa rotation), au cours de la première étape de l'expérience
- placer une autre tige (courte ou longue, en fer ou en cuivre) à travers la/les flamme(s) d'une ou plusieurs bougies allumées
- prélever le nombre θ_2 de divisions du cadran atteint par le pointeur (dans sa rotation), au cours de la deuxième (finale) étape de l'expérience
- comparer θ_1 et θ_2
- déterminer L en fonction de L_0 (longueur initiale, de λ (coefficient caractéristique de la nature du solide chauffé) et de la température de chauffage

QUESTION

Cette expérience nous permet de vérifier que :

- A. l'allongement de la tige courte est supérieur à celui de la tige longue.
- B. l'allongement de la tige en cuivre est supérieur à celui de la tige en fer.
- C. l'allongement de la tige chauffée par une seule bougie est supérieur à celui de la tige chauffée par plusieurs bougies.
- D. l'allongement est nul dans tous les cas.

MSP 4.6 Loi de variation du volume d'un liquide


A. Savoirs essentiels

Dilatation des liquides

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : « Dilatation des liquides ».

C. Exemple de situation

Bassin d'eau Chaude

Pour mettre en garde contre le danger d'explosion, souvent mortel, occasionné par l'expansion du volume d'un liquide par suite de son réchauffement, le professeur de la 2ème année des humanités scientifiques de l'Institut Tungunukayi de Mwene-Ditu dans la province de Lomami demande à ses élèves d'étudier le phénomène de dilatation des liquides à partir de deux récipients transparents et gradués contenant de l'huile.

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)					
Verser	l'huile à la même hauteur dans deux récipients transparents, gradués et ouverts					
Prélever	le niveau d'huile (le même) dans les deux récipients					
	le niveau atteint par l'huile dans le récipient plongé dans l'eau chaude après environ 5 minutes					
Comparer	la variation observée du volume					
Reprendre	l'expérience avec 2 récipients plus gros, avec l'huile ou un autre liquide au même niveau que dans la première expérience					
Déterminer	les 3 facteurs dont dépend la variation de volume					
Établir	l'expression mathématique du volume à n'importe quelle température, en partant de l'opération précédente.					

E. Évaluation

(1). Exemples d'items

Partir de la dilatation de l'huile d'un récipient pour exprimer graphiquement la variation de volume en fonction :

- a) du volume initial du liquide
- b) de la nature du liquide
- c) de la température du liquide

(2) Situation similaire à traiter

L'enseignant de la 2^e année des humanités scientifiques demande à ses élèves de trouver expérimentalement l'expression mathématique du volume d'un liquide en dilatation, en fonction de la température. Il leur propose l'ordre suivant d'actions à mener :

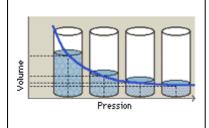
ORDRE D'ACTIONS	Actions (de l'élève)	Contenus (sur lesquels portent les actions)					
Α	Verser	de l'huile à la même hauteur dans les deux récipients					
В	Prélever	le niveau atteint par l'huile dans le récipient plongé dans l'eau chaude					
С	Graduer	les deux récipients					
D	Prélever	le niveau initial de l'huile dans les deux récipients					
E	Placer	le deuxième récipient dans l'eau chaude					
F	Déterminer	les 3 facteurs dont dépend la variation de volume en partant du résultat de l'expérience.					
G	Établir	l'expression mathématique du volume à n'importe quelle température, en partant du résultat de l'expérience.					

QUESTION:

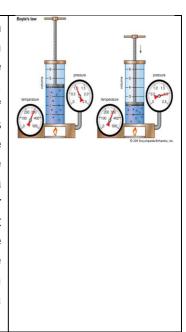
Encercle le chiffre qui correspond à l'ordre strict des actions pouvant mener au résultat efficace :

1. ACBDEFG 2. DEFABCGHIJ 3.EDACFGHI 4. CADEBFG

MSP 4.7 Loi de Boyle-Mariotte


A. Savoirs essentiels

Dilatation des gaz à température constante


B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : « Dilatation des gaz à température constante».

C. Exemple de situation

En vue de mettre en évidence la dilatation ďun gaz sous une température constante, l'enseignant de la 2e année des humanités scientifiques du Lycée Lotsing'esengo Basankusu demande à ses élèves de chercher une pompe à vélo et d'étudier la relation entre le volume à l'intérieur de la pompe et la pression qu'il subit, sans que la température ne varie

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)				
Disposer	d'une pompe à vélo				
Aspirer	l'air en tirant le piston				
Boucher	l'orifice de la pompe avec un doigt				
Pousser	le piston vers le fond de la pompe				
Décrire	les variations du volume et de la pression qu'on ressent				
Exprimer	mathématiquement le résultat obtenu				

E. Evaluation

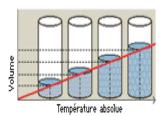
(1) Exemples d'items

Partir de la dilatation d'un gaz à température constante et exprimer graphiquement le volume en fonction de la pression exercée sur le gaz

(2) Situation similaire à traiter

Rechercher la relation entre le volume et la pression exercée sur un gaz en se servant d'une seringue ou d'une poire.

MSP 4.8 Loi de Gay-Lussac


A. Savoirs essentiels

Dilatation des gaz à pression constante

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : « Dilatation des gaz sous une pression constante».

C. Exemple de situation

En vue de mettre en évidence la dilatation d'un gaz sous une pression constante, Jean-Léon Elenga, professeur de la 2º HSC de l'Institut Bongunda demande à ses élèves d'exposer un ballon au soleil, de prouver sa dilatation et de ressortir la relation entre le volume à l'intérieur du ballon et la température.

D. Activités

Action »s (de l'élève)	Contenus (sur lesquels portent les actions)				
Disposer	d'un ballon				
Remplir	un ballon de l'air				
Passer	le ballon à travers un anneau de fil de fer ajustable				
Exposer	le ballon au soleil				
Passer	de nouveau le ballon à travers le même anneau				
Décrire	le phénomène observé				
Exprimer	mathématiquement le résultat obtenu				

E. Évaluation

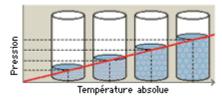
(1) Exemple d'items

Partir de la dilatation des gaz à pression constante pour exprimer graphiquement le volume en fonction de la température.

(2) Situation similaire à traiter

Rechercher la relation entre le volume et la température en observant le mouvement d'un couvercle de la marmite contenant un liquide en ébullition.

MSP 4.9 Loi de charles


A. Savoirs essentiels

Dilatation des gaz à volume constant.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : « **Dilatation des gaz à volume constant** ».

C. Exemple de situation

Pour mettre en évidence l'augmentation de la pression sous l'effet de la température, l'enseignant de la 2ème année des humanités scientifiques du groupe Scolaire du Mont Amba demande à ses élèves d'exposer un récipient en aluminium rempli d'air au soleil, de ressortir l'effet de la température sur la pression et d'en déduire la relation entre le volume et la température.

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)				
Disponibiliser	un récipient en aluminium et une pompe à vélo				
Remplir	le récipient d'air				
Exposer	le récipient au soleil				
Ressortir	l'effet de la température sur la pression				
Établir	la relation mathématique entre la pression et la température				

E. Évaluation

(1) Exemples d'items

- Tracer le graphique de la dilatation des gaz à volume constant,
- Établir la relation mathématique entre la pression et la température.

(2) Situation similaire à traiter

Un ajusteur expose au soleil une bombonne métallique de 10 litres remplie du gaz méthane. Le volume restant constant, les variations de la pression et de la température sont indiquées dans le tableau cidessous :

Pression en bar	1,00	1,20	1,40	1,60	1,80	2,00
Température en °C	25	26	27	28	29	30

Tracer le graphique :

- a) de la pression en fonction du volume
- b) de la température en fonction du volume
- c) de la pression en fonction de la température

MSP 4.10 Sources de chaleur et relations calorimetriques

A. Savoirs essentiels

Sources de chaleur, chaleur massique, capacité calorifique et quantité de chaleur

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : « Sources de chaleur, chaleur massique, capacité et quantité de chaleur ».

C. Exemple de situation

L'enseignant de sciences physiques affirme ce qui suit à l'intention de ses élèves de 2^e année des humanités scientifiques : « L'homme a besoin de la chaleur pour cuire les aliments, les sécher pour les conserver et aussi fondre des matériaux. ».Il leur demande de :

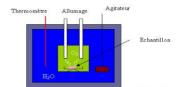
- donner les différentes sources de chaleur et le sens des concepts « chaleur massique notée c et capacité calorifique notée μ »
- décrire la relation fondamentale de la calorimétrie

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Énumérer	les différentes sources de chaleur
Restituer	les définitions de:
	- la calorimétrie,
	- la capacité calorifique ou thermique,
	- la chaleur massique ou spécifique.
Écrire	les symboles et les unités de mesure :
	- de la quantité de chaleur,
	- de la capacité calorifique,
	- et de la chaleur massique.
Établir	la relation fondamentale de la calorimétrie
	la correspondance entre la kilocalorie (kcal) et la calorie (cal) ; la thermie (th) et la kcal ; la frigorie (fg) et la kcal

E. Évaluation

(1) Exemples d'items


1. Définir la calorimétrie

- 2 .Donner les différentes unités de mesure de la quantité de chaleur
- 3. Différencier la chaleur spécifique de la capacité calorifique
- 4. Donner l'unité de la quantité de chaleur utilisée dans les industries frigorifiques

(2) Situation similaire à traiter

Le pouvoir calorifique ou chaleur de combustion (noté H, en anglais Heating Value) d'une matière combustible est l'énergie dégagée sous forme de chaleur par la réaction de combustion de dioxygène (autrement dit la quantité de chaleur). Le pouvoir calorifique peut être déterminé à l'aide d'une bombe calorimétrique (appareillage permettant de mesurer le dégagement de chaleur au cours d'une réaction effectuée à volume constant).

Bombe calorimétrique

Les aliments sont considérés comme les combustibles du corps humain, et on a pour les trois groupes d'aliments :

lipide: environ 9 kcal/g
glucide: environ 4 kcal/g
protéine: environ 4 kcal/g

Question 1 : Écrire le groupe des lettres correspondantes aux propositions correctes :

- a) La bombe calorimétrique se trouve au sein d'un calorimètre
- b) La bombe calorimétrique est constituée de la substance à étudier, du dioxyde et du dispositif à feu
- c) On peut déterminer le pouvoir calorifique d'un combustible au moyen de la bombe calorimétrique
- d) Les glucides et les protéines n'ont pas le même pouvoir calorifique

Question 2:

Sachant que 1 kcal = 4 180 J, convertis en J/g le pouvoir calorifique S de trois groupes alimentaires de base pour le corps humain.

.

MSP 4.11 Principes de la calorimetrie

A. Savoirs essentiels

Principe des échanges – Principe des transformations inverses

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : « Principe des échanges – Principe des transformations inverses ».

C. Exemple de situation

S'étant brûlé au doigt avec le fer à repasser, l'élève KABEYA de la 2e année des humanités scientifiques de l'institut Espoir des Sourds de KISANGANI, saisit le doigt brûlé avec les trois doigts de l'autre main et constate que la quantité de chaleur perdue (cédée) par le doigt brûlé s'est transmise aux autres doigts, qui l'ont effectivement absorbée (gagnée). Il demande l'explication de ce phénomène à son enseignant des sciences physiques. Celui-ci lui explique qu'il s'agit de l'un des principes généraux sur lesquels repose la calorimétrie. Il ajoute que lorsqu'un corps reçoit une quantité de chaleur lors d'une certaine transformation, il cède la même quantité de chaleur au cours de la transformation inverse. Pour vérifier alors ces principes, l'enseignant demande à ses élèves de prendre 150 ml d'eau (1ml d'eau a une masse de 1 g), les porter de 30° C à 50° C, de calculer la quantité de chaleur absorbée (en calories) ainsi que celle restituée en passant de 50° C à 30° C, puis de comparer les deux quantités de chaleur.

D.Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Prendre	150 ml d'eau
Porter	les 150 ml d'eau de 30° C à 50° C
Calculer	en calories la quantité de chaleur absorbée
Ramener	les 150 ml d'eau de 50° C à 30° C
Calculer	en calories la quantité de chaleur restituée
Comparer	les deux quantités de chaleur obtenues
Énoncer	les deux principes généraux de la calorimétrie

E. Évaluation

(1) Exemple d'item

Énoncer les deux principes généraux de la calorimétrie

(2) Situation similaire à traiter

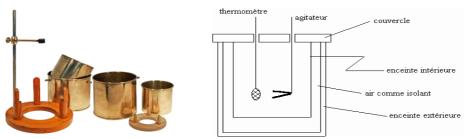
Un mineur descend dans un tunnel vertical, muni d'un bidon contenant 5 litres d'eau à 25° C et atteint une couche de graviers qui se trouve à une profondeur de 25 mètres. Le degré géothermique est de 1° C pour 33 mètres .La chaleur massique de l'eau est de 1 et on sait que 1 l = 1 kg.

Question: Entoure la lettre qui correspond à la bonne réponse

La quantité de chaleur que les 5 I d'eau reçoivent de la terre vaut :

- A. 120,5 kcal
- B. 129,5 kcal
- C. 120,5 kcal
- D. 129,5 kcal

MSP 4.12 Le Calorimètre


A. Savoirs essentiels

Calorimètre à eau – Équation calorimétrique

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : «Calorimètre à eau – Équation calorimétrique».

C. Exemple de situation

Lors d'une leçon des sciences physiques en 2e année des humanités scientifiques, l'enseignant met à la disposition de ses élèves un calorimètre à eau, une substance solide de masse M grammes, une masse m grammes d'eau et un protocole ayant pour mode opératoire :

- Chauffer à la température θ_1 la masse M de la substance ;
- Repérer la température θ_2 du calorimètre de valeur en eau μ (capacité calorifique) et son contenu m grammes d'eau ;
- Verser M grammes de substance, agiter le mélange et repérer la température d'équilibre θ_{e} .

Il leur demande de (d'):

- décrire le calorimètre
- appliquer le principe des échanges et de déterminer l'équation calorimétrique.

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Disponibiliser	une masse M, un récipient à double parois,un calorimètre et une quantité m grammes d'eau
Démonter	le calorimètre
Décrire	le calorimètre
Chauffer	à la température θ_1 la masse M de la substance
Repérer	la température θ_2 du calorimètre et son contenu
Verser	M grammes de substance dans le récipient
Agiter	le mélange
Repérer	la température d'équilibre θe
Déterminer	la quantité de chaleur cédée par la substance de $ heta_1$ à $ heta_e$
	la quantité de chaleur absorbée par le calorimètre et son contenu passant de θ_2 à $\theta_{\rm e}$
Appliquer	le principe des échanges : Q _c = Q _a
Établir	l'équation calorimétrique

E. Évaluation

(1) Exemples d'items

- 1. Citer les parties essentielles et accessoires d'un calorimètre.
- 2. Établir l'équation calorimétrique.
- 3. Schématiser le calorimètre.

(2) Situation similaire à traiter

Utiliser les ressources locales pour fabriquer un calorimètre et déterminer sa valeur en eau.

MSP 4.13 Changement d'états

A. Savoirs essentiels:

Changement d'états, lois et chaleur latente.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels « **Changement d'états, lois et chaleur latente** ».

C. Exemple de situation

Dans une série de manipulations, les élèves de la 2^e année des humanités scientifiques se trouvent confrontés à une situation qu'ils cherchent à comprendre :

Un thermomètre planté à l'intérieur de la glace affiche une température inférieure à 0 °C, une fois la glace chauffée, la température augmente et atteint 0 °C, et à cet instant, la température ne bouge pas aussi pendant que la glace continue à fondre.

L'enseignant demande aux élèves de chercher à

- mettre en évidence le changement d'état physique de la matière ainsi que les principes de transition solide-liquide,
- déterminer les différents facteurs de ce changement d'états

D.Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
Disponibiliser	le matériel (glace, thermomètre, réchaud électrique et récipient, réfrigérateur)	
Planter	le thermomètre dans la glace	
Lire	la température affichée	
Chauffer	la glace	
Prélever	la température du mélange eau-glace	
Observer	le changement d'état physique de la glace en eau	
Refroidir	le liquide obtenu	
Lire	la température affichée	
Déterminer	les facteurs intervenus dans ces phénomènes	
Formuler	les lois du changement d'états	

E. Évaluation

(1) Exemple d'items

- a) Définir :
 - la fusion
 - la solidification
 - la sublimation
 - la vaporisation
 - la liquéfaction
 - la chaleur latente
- b) Énoncer les lois du changement d'états

(2) Situation similaire à traiter

Par un exemple pratique, montrer que la chaleur latente d'un changement d'état est l'opposé de la chaleur latente du changement d'état inverse tel que L (fusion) = - L (solidification).

MSP 4.14 Sources de lumière et corps éclairés

A. Savoirs essentiels

Sources primaires (directes) et Secondaires (indirectes) de lumière

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : «Sources primaires (directes) et Secondaires (indirectes) de lumière ».

C. Exemple de situation

Pour voir un objet, il faut recevoir dans ses yeux de la lumière provenant de cet objet. Tout objet qui émet la lumière est une source primaire ou directe mais celui qui diffuse une partie de la lumière qu'il reçoit d'un objet est une source secondaire ou indirecte. L'enseignant des sciences physiques demande à ses élèves de dresser un tableau et de classer les objets suivants : la lune, le soleil, la terre, la flamme de l'allumette, la lampe à incandescence, les étoiles, le projecteur, les vitres claires, un drap blanc, le miroir de toilette, le tableau noir; en sources primaires ou secondaires de lumière ; en corps éclairés (sources secondaires), opaques, transparents et translucides, en corps opaques réfléchissants et absorbants.

D. Activités

Actions (d l'élève)	de Contenus (sur lesquels portent les actions)
Restituer	la définition de : l'optique, l'optique géométrique, corps opaque, corps transparents, corps translucides, corps réfléchissant et corps absorbant
	un tableau ayant pour rubriques sources primaires et sources secondaires
Dresser	un tableau ayant pour rubriques corps transparents, opaques et translucides
	un tableau ayant pour rubriques corps opaques réfléchissants et absorbants

E. Évaluation

(1) Exemples d'items

- 1. Définir l'optique.
- 2. Citer deux sources lumineuses secondaires et deux autres primaires

- 3. Classer les objets ci-dessous en corps opaques, transparents et translucides :
- a) miroir de toilette,
- b) tableau noir,
- c) feuille de papier duplicateur,
- d) vitre fumée.

(2) Situation similaire à traiter

Dans votre environnement, il existe des sources lumineuses incandescentes et les sources lumineuses luminescentes. Les premières émettent de la lumière sous une température élevée et les secondes émettent de la lumière à froid ou sans élévation appréciable de la température ; on les appelle alors des sources froides.

L'élève Kangoma donne la liste ci-dessous des sources artificielles :

- 1. Flamme d'une bougie
- 2. Ecran d'un poste de télévision
- 3. Filament d'une ampoule électrique
- 4. Flamme d'une lampe tempête
- 5. Tubes fluorescents de lumière blanche.

Question

En se référant au texte ci-dessus, compléter le tableau suivant :

Sources incandescentes	
Sources luminescentes	

MSP 4.15 Principe et vitesse de propagation de la lumière

A. Savoirs essentiels

Principe fondamental de l'optique géométrique - vitesse de propagation de la lumière.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels : « Principe fondamental de l'optique géométrique - vitesse de propagation de la lumière ».

C. Exemple de situation

Dans un milieu donné, la lumière se propage avec une vitesse dite « célérité »; la lumière émise par le soleil se propage dans le vide et dans l'air, du Soleil jusqu'à la Terre à la vitesse de 299 792 458 m/s (environ 300 000 km/s). On dispose d'une source de lumière (lampe d'un téléphone portatif), de trois plaques en carton percées chacune d'un petit trou en son milieu, d'un fil de nylon et d'une plaque de carton non percée d'aucun trou qui sert d'écran.

L'enseignant de sciences physiques de 2^e année des humanités scientifiques demande à ses élèves de monter un dispositif en plaçant verticalement les trois plaques en carton entre la lampe allumée et l'écran, de faire passer le fil de la lampe aux trois cartons percés et de noter leurs observations lorsque :

- le fil n'est pas tendu ;
- le fil est tendu, et schématiser le trajet suivi par la lumière de la source à l'écran.

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
Monter	le dispositif comprenant dans l'ordre : la lampe, trois plaques de cartons percées et l'écran (chaque élément étant disposé verticalement)	
Passer	par les trous des plaques de carton, le fil : on non tendu tendu	
Noter	les observations dans chaque cas	
Schématiser	le cas où le fil est tendu (une droite munie d'une flèche qui indique le sens de propagation de la lumière)	
Établir	le principe de propagation de la lumière à partir du schéma réalisé	

E. Évaluation

(1) Exemples d'items

- 1. Énoncer le principe fondamental de propagation de la lumière.
- 2. L'année-lumière ou année de lumière (al) est la distance que la lumière (solaire) parcourt pendant une année (365 j 6 h); calculer sa valeur en utilisant la formule d= c.t

(2) Situation similaire à traiter

Sachant que 1 al = 9, 461.10¹⁵ m (al est appelée année-lumière ou année de lumière),les autres étoiles de notre galaxie sont très éloignées de la Terre, mais la plus proche d'entre elles est Proxima du Centaure. Sa lumière met 4,243 années pour nous parvenir. L'enseignant des sciences physiques demande à ses élèves de calculer la distance (en années-lumière, en km et en m) de cette étoile à la Terre.

MSP 4. 16 Applications pratiques de la propagation de la lumière

A. Savoirs essentiels:

Ombre et pénombre, phases de la lune et éclipses

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de matière acceptable, des situations faisant appel aux savoirs essentiels : « ombre et pénombre, phases de la lune, éclipses ».

C. Exemple de situation

L'enseignant des sciences physiques de 2^e année des humanités scientifiques met à la disposition de ses élèves :

- une table ou un pupitre une source de lumière punctiforme (ponctuelle)
- une source lumineuse étendue
- une boule suspendue à un support
- un écran (par exemple un mur blanc)
- le schéma suivant

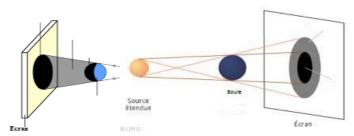
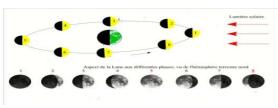



Figure 1 : cas d'une source ponctuelle Figure 2 : Cas d'une source étendue

Figures 4 et 5

L'enseignant demande aux élèves :

- de placer la boule entre :
 - la source ponctuelle et l'écran (figure 1)
 - la source étendue et l'écran (figure 2)

- de compléter les schémas selon le cas par ombre, ombre portée et pénombre.
- d'expliquer les différents aspects de la lune (figure 3)
- d'expliquer et préciser les types d'éclipses (figures 4 et 5)

D. Activités

Activité 1 : Formation des ombres et pénombres à petite échelle

1 Utilisation de la source ponctuelle

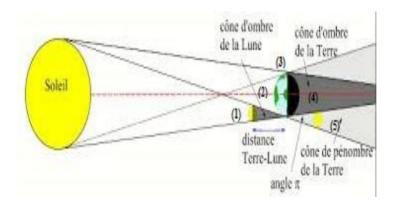
Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Placer	la table sur un endroit convenable
Interposer	la boule entre la source ponctuelle et l'écran
Localiser	les régions éclairées et obscures sur :
	la boule
	• l'écran
Observer	la partie située derrière la boule
Schématiser	le dispositif et les phénomènes observés

2. Utilisation de la source étendue

Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Placer	la table sur un endroit convenable
Interposer	la boule entre la source étendue et l'écran
Localiser	les régions éclairées et obscures sur : • la boule • l'écran
Observer	la partie située derrière la boule
Schématiser	le dispositifles phénomènes observés

Activité 3 : Ombre et pénombre à grande échelle : Phases de la Lune et Éclipses

Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Observer	la figure 3
Distinguer	
Nommer	les différentes formes prises par la lune
Schématiser	ces différentes formes
Observer	les figures 4 et 5
Expliquer	le mécanisme d'éclipses de la Lune et du Soleil


E. Évaluation

1. Exemples d'Items

- a) Nommer la zone non éclairée de la boule et de l'écran lorsqu'on utilise une source ponctuelle
- b) Répondre par vrai(V) ou faux (F) aux affirmations suivantes :

Affirmations		Faux
La nouvelle Lune est visible depuis la Terre		
Les changements de la Lune sont dus à l'ombre propre		
Les éclipses sont dues à l'ombre portée		
Le dernier quartier de la Lune est visible en fin de nuit		
Le dernier quartier croissant s'observe au jour levant		

2. Situation similaire à traiter

Distinguer les types d'éclipses et des phases de la lune au regard des positions (1), (2), (3) et (4) de la figure cicontre.

MSP 4.17 Réflexion de la lumière

A. Savoirs essentiels:

Phénomène de réflexion et lois de réflexion de la lumière

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de matière acceptable, des situations faisant appel aux savoirs essentiels « Phénomène de la réflexion et lois de la réflexion de la lumière ».

C. Exemple de situation

L'enseignant des sciences physiques de la 2° année des humanités scientifiques met à la disposition de ses élèves un miroir, une lampe torche, un rapporteur et leur demande de mener des actions successives pour visualiser les phénomènes de réflexion et en établir les lois.

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Apprêter	le matériel (miroir, lampe torche et rapporteur)
Placer	horizontalement le miroir sur la table, la face argentée tournée vers le haut
Fixer	perpendiculairement le rapporteur
Envoyer	successivement suivant trois angles différents un rayon lumineux sur un miroir
Mesurer	chaque fois l'angle de réflexion de la lumière par rapport à la normale
Observer	les phénomènes de la réflexion de la lumière
Établir	les lois de la réflexion de la lumière

E. Évaluation

(1) Exemples d'Items

- Définir la réflexion de la lumière
- Énoncer les lois de la réflexion de la lumière

2. Situation similaire à traiter similaire

Sachant que la lumière réfléchie dépend de l'angle î formé par le rayon incident et la normale, compléter le tableau ci-dessous :

I	0°	10°	20°		40°	50°	60°		80°
î'				30°				70°	

MSP 4.18 Miroirs et réflexion de la lumière


A. Savoirs essentiels:

Miroirs et réflexion de la lumière

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de matière acceptable, des situations faisant appel aux savoirs essentiels : «Miroirs et réflexion de la lumière ».

C. Exemple de situation

L'enseignant des sciences physiques de la 2e année des humanités scientifiques remet à ses élèves une vitre mince et propre, quelques objets pesants pour maintenir la vitre verticale, une table, deux bougies (de la figure ci-contre), une boîte d'allumettes et un miroir plan et demande de mener leur des actions successives pour distinguer l'image réelle de l'image virtuelle d'un objet.

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)				
Disponibiliser	le matériel				
Placer	une bougie A allumée à 20 cm d'un côté de la vitre				
	la bougie B de l'autre côté de la vitre à égale distance de la première par rapport au miroir				
Observer	la bougie B				
Énoncer	les lois de réflexion de la lumière				
Placer	verticalement le miroir plan				
Soulever	le bras gauche puis le bras droit				
Observer	les phénomènes				
Distinguer	les prichomenes				

E. Évaluation

(1) Exemples d'Items

- 1. Définir un miroir
- 2. Nommer la région où l'image d'un objet est visible dans un miroir.

(2) Situation similaire à traiter

Lire et Justifier la manière d'écrire la mention que porte ce véhicule

MSP 4.19 La réfraction de la lumière

A. Savoirs essentiels

Décomposition de la lumière et le phénomène d'arc-en-ciel

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter succès et de manière acceptable, les situations faisant appel à des savoirs essentiels « Décomposition de la lumière et le phénomène d'arc-en-ciel ».

C. Exemple de situation

Figure 1 : Prismes (à angle droit, 60° et 30°)

Figure2 : arc-en-ciel

Figure 3 : Lumière blanche décomposée par un

prisme

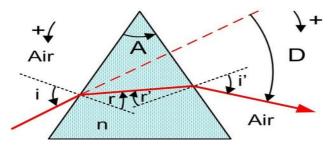


Figure 4: section d'un prisme

La figure 4 représente un prisme d'indice n composé de deux dioptres plans faisant un angle A. Un rayon lumineux entre par la face 1 sous l'incidence i et sort par la face 2 sous l'incidence i', les angles de réfraction correspondants dans le prisme sont r et r', D est la déviation du rayon provoquée par le prisme.

L'enseignant de la 2^e année des humanités scientifiques demande aux élèves de se servir des figures (1, 2 et 3 ci-dessus) pour identifier le prisme à l'angle droit, à 30° et à 60°; de se servir du prisme ou d'un autre rayon pour décomposer la lumière blanche, de déterminer l'indice de réfraction et enfin d'expliquer le mécanisme de l'arc-enciel.

Activité de l'élève	Contenu (sur lequel porte les actions)			
Restituer	la définition d'un prisme			
Observer	les figures 1, 2 et 3			
Identifier	le prisme à : • angle droit • 60° • 30°			
Décomposer	a lumière blanche en utilisant l'un des prismes			
Observer	les couleurs issues de cette décomposition			
Exploiter	la figure 4			
	l'indice de réfraction du prisme à la face 1 et à la face 2			
Déterminer	l'angle :			
Expliquer	le mécanisme de l'arc-en-ciel			

E. Évaluation

(1) Exemple d'Items :

- 1. Définir un prisme
- 2. Donner l'importance d'un prisme
- 3. Citer les différentes couleurs d'un arc-en-ciel.

(2) Situation similaire à traiter:

Expliquer le phénomène de l'arc-en-ciel en réalisant l'expérience de la réfraction de la lumière avec un verre d'eau, une lampe torche et un papier blanc.

MSP4. 20 La réflexion et la réfraction de la lumière

A. Savoirs essentiels

La réfraction et la réflexion totale

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, les situations faisant appel à des savoirs essentiels « La réfraction et la réflexion totale de la lumière».

C. Exemple de situation

L'enseignant des sciences physiques de la 2^e année des humanités scientifiques remet à ses élèves un verre, un bâton, une quantité d'eau, du lait et un morceau de carton de forme rectangulaire. Il leur demande de mener des actions successives pour observer et décrire les différents phénomènes produits par les rayons lumineux sur les objets afin d'établir les lois de la réfraction lumineuse.

D. Activités

Activité (de l'élève)	Contenus (sur lesquels portent les actions)			
Restituer	les définitions de la réfraction et la réflexion totale			
Verser	une quantité d'eau dans un verre			
Plonger	obliquement le bâton dans le verre d'eau			
Observer	le phénomène			
Percer	un petit trou sur un morceau du carton expérimental			
Verser	quelques gouttes de lait dans l'eau			
Tenir	le verre en plein soleil ou devant une source de lumière			
Placer	le morceau du carton de manière à ce que le trou soit juste en dessous de la surface de l'eau			
Lever	le morceau du carton jusqu'à ce que le rayon lumineux frappe la surface de l'eau			
Observer	la direction de ce rayon lumineux			
Énoncer	les deux lois de la réfraction de la lumière			
Envoyer	un rayon lumineux sous un angle supérieur à l'angle d'incidence critique			
Noter	les observations.			

(1) Exemples d'Items :

- 1. Définir la réfraction de la lumière et le dioptre
- 2. Énoncer les deux lois de la réfraction de la lumière

(2) Situation similaire à traiter :

Se servir de la calculette scientifique et compléter le tableau suivant dans lequel on a déjà prélevé les valeurs de l'angle d'incidence pour le dioptre air/verre dont l'indice de réfraction n est voisin de 1,5 ; faire le constat pour la dernière rubrique et tirer la conclusion.

î	r	sinî	sinî	$n = \frac{\sin \hat{\imath}}{\sin \hat{r}}$
30°	19°	0 ,5		
40°	26°	0,64		
50°	31°	0,77		
60°	35°	0,87		
70°	39°	0,94		
80°	41°	0,98		

MSP 4.21 Instruments d'optique

A. Savoirs essentiels

La réfraction à travers les lentilles optiques

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable, des situations faisant appel aux savoirs essentiels «La réfraction à travers les lentilles optiques ».

C. Exemple de situation



Figure 1: Vues de profil d'une lentille biconvexe

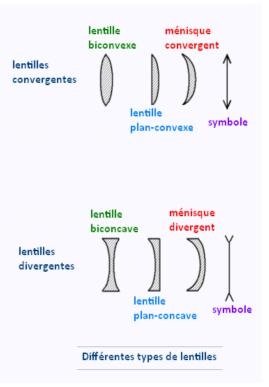


Figure 2 : Différents types de lentilles

On considère un objet *AB* dont l'image *A'B'* est formée grâce à une lentille de distance focale *f*, comme l'indique le schéma ci-dessous (dans le cas d'une lentille convergente et d'un objet réel).

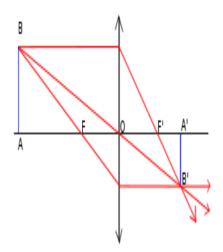


Figure 3

Connaissant la distance p de l'objet à la lentille, on est capable de déterminer l'endroit où va se former l'image grâce à la relation suivante dite « relation de conjugaison » des lentilles minces sphériques : $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$ (1)

Après avoir calculé la distance q de la lentille à l'image, il faut savoir calculer la taille de cette image. Cette taille est reliée à la taille de l'objet par l'intermédiaire de la formule de grandissement : $\gamma = \frac{q}{p} = \frac{H_i}{H_0}$ (2).

Où H_i et H_o désignent respectivement la taille de l'image et celle de l'objet.

L'enseignant de la 2ème année des humanités scientifiques demande aux élèves de (d') :

- décrire les différentes lentilles
- expliquer le schéma ci-dessus sachant que F et F' désignent respectivement le foyer objet et le foyer image, O le centre optique ou sommet de la lentille.

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Observer	la figure 2
Décrire	les différentes lentilles
Examiner	la figure 3
Expliquer	la marche des différents rayons lumineux traversant la lentille
Dégager	les deux formules des lentilles minces sphériques
Expliquer	les différents paramètres contenus dans les deux formules

(1) Exemples d'items

- 1. Donner les symboles des lentilles optiques.
- 2. Nommer les lentilles dont la partie centrale est :
 - a) mince b) plus épaisse.
- 3. Donner la formule de position d'une lentille.

(2) Situation similaire à traiter

En optique, la grandeur $C = \frac{1}{f}$ s'appelle vergence (puissance de verre ou des lentilles) et s'exprime en dioptrie notée δ (delta minuscule) et f, distance focale en mètre.

Sur une fiche médicale, l'ophtalmologiste indique si le problème d'amétropie (troubles de vue) concerne la Vision de Loin (VL) ou la Vision de Près (VP), ainsi que l'œil concerné, soit Œil Droit (OD), Œil Gauche (OG) ou Œil Droit et Gauche (ODG).

Puis, il précise la nature du défaut visuel rencontré, suivi de sa correction qu'il indique sur la fiche médicale en dioptries « δ »:

- La myopie (vision floue de loin) se traduit par un signe (-) suivie de la correction;
- L'hypermétropie ou la presbytie (vision floue de près), selon le cas se traduit par un signe (+) suivie de correction, la presbytie seule se traduit par « Add » suivie de la correction et peut s'ajouter aux défauts oculaires déjà existants en vision de loin;
- L'astigmatisme (vision brouillée et déformée des lignes verticales et horizontales) s'ajoute aux défauts précédents et se traduit par la valeur de l'astigmatisme entre parenthèse précédée d'un signe (+) ou (-), puis le degré d'orientation de la correction.

Question 1: Expliquer l'ordonnance d'un malade qui porte les mentions suivantes :

Ordonnance VL

ODG : $-1,00 \delta (+0,50 \delta) 90^{\circ}$

Question2 : Expliquer la fiche médicale qui porte les mentions ci-dessous :

Ordonnance Presbytie

OD: $-0.75 \, \delta \, (-0.25 \, \delta) \, 75^{\circ}$ OG: $+0.50 \, \delta$ ADD: $+2.00 \, \delta$

MSP 4.22 Instruments d'optique

A. Savoirs essentiels:

Œil humain, loupe et microscope.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels «**Œil humain, loupe et microscope**».

C. Exemple de situation

L'élève Hugmie de la 2^e année des H.SC. au lycée de Kingasani 2 à Kinshasa pose cette question à ses collègues : pourquoi trois de leurs collègues portent les verres correcteurs pendant les cours? Le lendemain pendant la séquence didactique sur les instruments d'optique, elle revient avec sa préoccupation. L'enseignant amène tous les élèves au labo de physique et leur demande de sélectionner quelques instruments d'optique et de donner le rôle de chacun d'eux.

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)
Observer	les matériels de laboratoire
Sélectionner	les instruments d'optique
Nommer	
Définir	chaque instrument sélectionné
Décrire	
Déterminer	le role de chaque instrument sélectionné

E. Evaluation:

(1) Exemples d'items

- 1. Définir chaque instrument d'optique vu
- 2. Décrire chaque instrument d'optique vu
- 3. Déterminer le rôle de chaque instrument d'optique vu.

(2) Situation similaire à traiter

L'enseignant demande aux élèves de chercher d'autres instruments d'optique sur internet, les nommer, les définir et les décrire.

3. TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION

MTIC 4.1 Fonctions trigonométriques avec MS Excel

A. Savoirs essentiels:

Les fonctions trigonométriques avec MS Excel.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels « Les fonctions trigonométriques avec MS Excel ».

C. Exemple de situation

Le Complexe scolaire Kibembu a connu une attaque des bandits pendant les fêtes de fin d'année et a perdu toute la documentation de sa bibliothèque. Pour reconstituer les tables des nombres trigonométriques, l'enseignante des Mathématiques de la 2^e année des humanités scientifiques sollicite auprès de son collègue des TIC une solution informatique. Ce dernier demande à ses élèves de 2e année des humanités scientifiques de reconstruire la table des nombres trigonométriques des angles remarquables (sinus, cosinus, tangente, cotangente, sécante, cosécante, ...) en utilisant le tableur Ms Excel.

	119	- (=	f _x				
	Α	В	С	D	E	F	G
1	Angle (°)	Radians	Sinus	Cosinus	tangente	Cotangente	Secante
2	0						
3	30						
4	45						
5	60						
6	90						
7	120						
8	135						
9	150						
10	180						
11	210						
12	225						
13	240						
14	270						
15	300						
16	315						
17	330						
18	360						

Actions (de l'élève)	Contenus (sur lesquels portent les actions)			
Démarrer	l'ordinateur			
Ouvrir	le tableur MS Excel			
Créer	un tableau comme indiqué sur la figure ci-dessus			
Saisir	les valeurs numériques des angles remarquables en degrés			
Convertir	es angles en radians			
Cliquer	sur le menu « Insertion »			
Choisir	la commande « Fonction » de la barre de formule			
sélectionner	la catégorie « fonctions Math & Trigo »			
Selectionnel	une fonction trigonométrique			
Noter	le résultat			
Reconstituer	la table des nombres trigonométriques			
Enregistrer	le fichier			
Imprimer	la table des nombres trigonométriques			

E. Évaluation

(1) Exemple d'item

Produire les valeurs trigonométriques des angles suivants : 45°, 60°,
 180° en utilisant le tableur Excel.

(2) Situation similaire à traiter

Kanu, élève de la 2^e année des humanités scientifiques de l'Institut Bimwala à Kinshasa, éprouve d'énormes difficultés pour calculer les valeurs des nombres trigonométriques et se confie à son enseignante de TIC. Cette dernière, profitant de la leçon sur les fonctions Mathématiques et trigonométriques avec Ms Excel, demande aux élèves de reconstituer la table des valeurs des nombres trigonométriques des angles de 0° à 360° dans une feuille de calcul Ms Excel et de:

- 1) calculer le sinus et le cosinus des angles 35° et 140°;
- 2) déterminer l'arc dont la tangente vaut 0,97622 et la cosécante 0,26387.

MTIC 4.2 Fonctions statistiques

A. Savoirs essentiels

Fonctions statistiques : Fréquence, Mode, Variance, Écart-type, Moyennes harmonique et géométrique, etc.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels « Fonctions statistiques : Fréquence, mode, variance, Écarttype, moyennes harmonique et géométrique, etc.».

C. Exemple de situation

Après avoir entendu que Madame Espérance est décédée suite à une maladie hémorragique à virus Ebola à l'Hôpital Général de Référence de Tchomia, le Ministère de la santé de la province de l'Ituri a très vite dépêché une équipe de « riposte contre Ebola » pour mener une enquête dans les localités environnantes. Le travail de cette équipe a consisté à tester, par localité, 50 personnes au hasard. Les enquêtes faites ont donné les résultats comme indiqués dans le tableau ci-dessous :

	C16 -	f _x			
	A	В			
		Personnes présentant			
	Localités	les symptômes de			
1		l'épidémie EBOLA			
2	Togba	35			
3	KasenyiMugumba	11			
4	Kasenyi centre	13			
5	Tchomia	5			
6	Inga centre	35			
フ	Aru	28			
8	Mahagi	35			
9					
10	Moyenne géométrique				
11	Moyenne harmonique				
12	Ecart-type				
13	Médiane				
14	Mode				
15	Variance				

Suite à ces résultats, une campagne de vaccination « anti-Ebola » est vite organisée pour prévenir et stopper cette épidémie dans cette contrée. En classe, lors de l'enseignement du cours des TIC, l'enseignant de la 2e année des humanités scientifiques de l'Institut Udjio Wa Heri demande à ses élèves de répondre aux questions ciaprès :

- Citer la localité la plus touchée par l'épidémie
- Calculer les moyennes géométriques et harmonique, le mode, la médiane, la variance, l'écart-type et la fréquence en utilisant MS EXCEL.

Actions (de l'élève)	Contenus (sur lesquels portent les actions)			
Identifier	la population à vacciner			
Restituer	la définition de concepts : écart type, médiane, variance, mode, moyenne harmonique, moyenne géométrique et fréquence			
	le nombre total des personnes testées			
Déterminer	le nombre total des personnes présentant les symptômes			
	le nombre total des personnes saines			
	la localité la plus affectée			
	le nombre des personnes infectées par localité en pourcentage			
Calculer	l'écart type, la médiane, la variance, le mode, les moyennes harmonique et géométrique en utilisant le tableur Ms Excel			

E. Évaluation

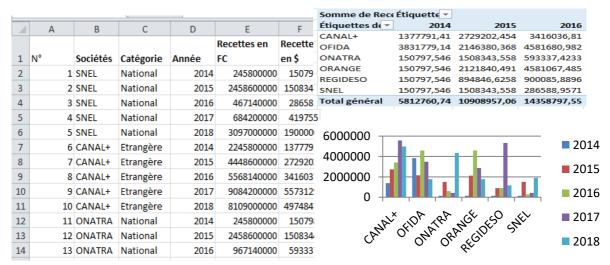
- (1) Exemples d'items
- Définir :
 - a) la fonction Max de Ms Excel
 - b) la Fonction Min de Ms Excel
- Indiquer la procédure pour calculer le mode et la fréquence d'une population en Ms Excel

(2) Situation similaire à traiter

A la fin des examens du 1^{er} semestre, l'enseignant des TIC de la 2e année des humanités scientifiques veut analyser les résultats de sa classe et demande à ses élèves de déterminer le mode, la médiane, l'écart-type, la moyenne géométrique et la variance afin d'évaluer l'efficacité desdits résultats.

MTIC 4.3 Tableaux et Graphiques croises dynamiques

A. Savoirs essentiels:


Tableaux et graphiques croisés dynamiques

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels « **Tableaux et graphiques croisés dynamiques** ».

C. Exemple de situation

La Fédération des Entreprises du Congo (FEC) a reçu les bilans annuels de quelques entreprises nationales et étrangères opérant en RDC, sous forme des tableaux linéaires. Le Directeur Général de la FEC désire avoir une synthèse dans un tableau unique pour lui permettre l'analyse. Ainsi, il se confie à sa fille LIVE, élève en 2e année des humanités scientifiques au collège Boboto à Kinshasa, de l'aider avec une solution informatique. L'élève LIVE se confie à son enseignant des TIC qui, au cours de sa leçon sur les tableaux et graphiques croisés, remet ces différents bilans à ses élèves. Il leur demande de trouver une présentation optimale avec les synthèses suivant les années et les entreprises dans un tableau unique et un graphique en histogramme selon les modèles ci-dessous.

Actions (de l'élève)	Contenus (sur lesquels portent les actions)					
Démarrer	l'ordinateur					
Lancer	le tableur MS Excel					
Créer	un tableau ayant pour rubriques : N°, Sociétés, catégorie, année, recettes en FC et en \$					
Saisir	les données dans le tableau					
Sélectionner	la cellule du début du tableau croisé					
	sur le menu « Insertion »					
Cliquer	sur la commande « TblCroiséDynamique » (« GphCroiséDynamique »)					
	sur la zone de texte : « tableau/plage » de la boîte de dialogue qui s'affiche					
	le tableau des données choisies					
Sélectionner	l'emplacement du tableau croisé dynamique (graphique croisé dynamique)					
Cliquer	sur le bouton « Ok » de la boîte de dialogue, une nouvelle fenêtre : « liste de champs de tableau croisé dynamique » s'affiche					
Placer	par glissement les différents champs dans les zones appropriées					
Tester	le filtre par année et catégorie sur le tableau croisé dynamique (graphique croisé dynamique)					
Enregistrer	le fichier sur une clé USB					
Imprimer	le classeur					
Arrêter	l'ordinateur					

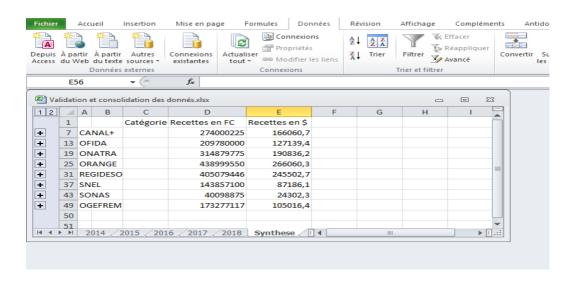
Ε.

- (1) Exemples d'Items
 - a) Monter l'importance d'un tableau croisé dynamique
 - b) Différencier un tableau croisé d'un tableau croisé dynamique.
- (2) Situation similaire à traiter

La maman de Georges, élève en 2e année des humanités scientifiques au Collège Udjio Wa Heri de Bunia, éprouve de difficultés lors des inventaires annuels de sa boutique. Elle décide d'informatiser la gestion de son stock et se confie à son fils en lui remettant la liste des marchandises en stock. Georges se confie à son enseignante des TIC qui, au cours de la leçon sur les tableaux croisés dynamiques, demande aux élèves d'organiser ces marchandises en catégories et types dans des tableaux Excel afin d'en faciliter la recherche et la gestion.

MTIC 4.4 Methode de consolidation des données avec MS Excel

A. Savoirs essentiels:


Méthode de consolidation des données avec MS EXCEL

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels «Méthode de consolidation des données avec MS EXCEL».

C. Exemple de situation

La Fédération des Entreprises du Congo (FEC) a reçu les bilans annuels de quelques entreprises nationales et étrangères opérant en RDC sous forme des tableaux linéaires. Le Directeur Général de la FEC désire avoir une synthèse dans un tableau unique pour lui permettre l'analyse. Ainsi, il se confie à sa fille LIVE, élève en 2° année des humanités scientifiques au collège Boboto à Kinshasa, de l'aider avec une solution informatique. L'élève Live se confie à son enseignant de TIC qui, profitant de sa leçon sur la consolidation des données, remet ces différents bilans à ses élèves de 2° année des humanités scientifiques et leur demande d'utiliser le Tableur Excel pour consolider ces données pour les cinq années, d'enregistrer le fichier sur une clé USB et la remettre à l'élève Live comme solution au problème posé par son père en se référant au modèle du tableau ci-dessous.

Actions (de l'élève)	Contenus (sur lesquels portent les actions de l'élève)
Démarrer	l'ordinateur
Ouvrir	le tableur MS Excel
Créer	un tableau ayant pour rubriques : N°, Sociétés, catégorie, année, recettes en FC et en \$.
Insérer	deux nouvelles feuilles
Créer	un groupe de travail pour les données communes à toutes les années
Saisir	les données dans les 5 feuilles du classeur
Renommer	les 5 feuilles suivant les 5 années sous examen
Ajouter	une nouvelle feuille pour la synthèse de 5 années
Positionner	le curseur dans la première cellule de la feuille synthèse
Cliquer	sur le menu « Données », commande « consolidation » pour afficher la boîte de dialogue « consolider »
Sélectionner	dans la boîte de dialogue qui s'affiche, la fonction de consolidation : « Somme »
Selectionnel	la première référence : les données de la première année (ici 2014)
Cliquer	sur le bouton « ajouter » de la boîte de dialogue « consolider » pour ajouter la référence des données dans la zone de texte « toutes les références »
Répéter	l'opération pour les autres années (2015, 2016, 2017 et 2018)
Cocher	les cases « ligne d'en haut, colonne de gauche et lier aux données sources » dans la boite de dialogue
Cliquer	sur « Ok » pour visualiser le résultat
Enregistrer	le fichier dans une clé USB
Imprimer	le fichier
Arrêter	l'ordinateur

- (1) Exemples d'Items
 - a) Montrer l'utilité de la consolidation des données
 - b) Énumérer les grandes étapes de la consolidation des données.

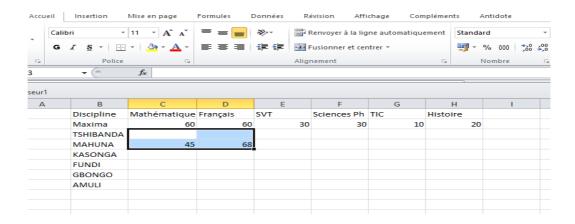
(2) Situation similaire à traiter

Le préfet de l'Institut Kola au Kongo Central, désire avoir les synthèses semestrielles et annuelles des résultats scolaires à partir des données périodiques de son école et se confie à son enseignant des TIC de la 2e année des humanités scientifiques à qui il remet ces données manuelles. En classe, l'enseignant remet les données aux élèves et leur demande de les consolider en utilisant le tableur Ms Excel suivant le modèle du tableau ci-dessous.

	A1	▼ (*)	f _x Dis	ciplines								
1	А	В	С	D	Е	F	G	Н	T	J	K	L
1	Disciplines	Cotes										
2	ED. CIVIQUE	16										
3	RELIGION	12										
4	Français	58										
5	Maths	63										
6												
7												
8												
9												
10												
H ·	I ▶ № / 2ième	période Exa	men 1er Se	emestre synt	tèse 1er semes	tre / 3ième	période / 4iè	me période /	synthèse 2èn	ne semestre	synthèse an	nuelle ∏ ∢
Prê	t					,		M	oyenne : 37,25		n vides): 10 S	omme : 149

MTIC 4.5 Méthode de validation des données avec MS Excel

A. Savoirs essentiels:


Méthode de validation des données avec MS EXCEL.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels « **Méthode de** validation des données avec MS EXCEL ».

C. Exemple de situation

Après la publication des résultats des élèves du 1^{er} semestre, l'Institut Bibwa à Kinshasa reçoit beaucoup de réclamations des parents sur les erreurs commises sur les fiches centralisatrices des résultats de leurs enfants (68/60 en Français). Le préfet de l'Institut demande à son enseignant des TIC de lui proposer une solution informatique permettant aux opérateurs de saisie d'éviter des erreurs lors du traitement des points scolaires. L'enseignant des TIC, profitant de sa leçon sur la validation des données en 2^e année des humanités scientifiques, demande à ses élèves de préparer une maquette de bulletin et de protéger toutes les cellules devant recevoir les cotes en se servant du modèle ci-dessous.

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
Démarrer	l'ordinateur	
Ouvrir	le tableur MS Excel	
Créer	un tableau ayant pour rubriques : Nom, Disciplines et maxima	
Sélectionner	les cellules ayant le même maxima (60 par exemple)	
	sur le menu « données » et la commande « validation des données » pour afficher la boîte de dialogue	
Cliquer	sur l'onglet « options » (type de données, plage de valeur « supérieur à » « ou inférieur à »)	
	sur l'onglet « message de saisie »	
	sur l'onglet « message d'erreurs »	
Tester	les données validées définies dans la maquette des bulletins	
Enregistrer	le fichier dans une clé USB	
Quitter	le tableur	
Arrêter	l'ordinateur	

- (1) Exemples d'Items
 - a) Montrer l'importance de la validation des données
 - b) Citer les différentes étapes de la validation des données

(2) Situation similaire à traiter

Le chef du personnel de l'Institut Academia constate qu'il y a régulièrement des erreurs de transcription des données dans le bulletin de paie par l'opérateur de saisie. Il sollicite le concours de l'enseignant des TIC de la 2^e année des humanités scientifiques qui, en classe, demande à ses élèves de trouver une solution informatique afin de fiabiliser le bulletin de paie en utilisant le tableur Excel suivant le modèle ci-dessous

A2 ▼ (<i>f</i> ∗ Libellé	
1	А	В	
1			
2	Libellé	Elément	
3	Nom	MUTUKU	
4	nbre de jours /MOIS	35	
5	salaire journalier	33000	
6	indemnité transport	22000	
7	salaire net		
8	Date	30 février 2019	

MTIC 4.6 Structures de contrôle mixtes

A. Savoirs essentiels:

Structures de contrôle mixtes

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel aux savoirs essentiels « **Structures de contrôle mixtes** ».

C. Exemple de situation

Une rumeur selon laquelle les garçons seraient plus forts en Math et physique que les filles, circule à Kinshasa. Après la publication des résultats du 1^{er} semestre, l'Institut mixte de Bibwa à Kinshasa reçoit des visiteurs dans le cadre des enquêtes sur le genre. Ces derniers veulent connaître les performances des filles par rapport aux garçons en français, anglais, mathématiques et en physique afin de dissiper les préjugés sur le genre. Le préfet de l'Institut demande à son enseignant des TIC de lui proposer une solution informatique permettant de calculer automatiquement la moyenne des notes et le nombre d'échecs obtenus par les uns et les autres pour les classes de 3^e et 4^e année des Humanités Scientifiques. L'enseignant des TIC demande à ses élèves de créer un programme qui répond à ce besoin.

D. Activités

Activité 1: Concepts

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
	la définition des concepts : boucle imbriquée	
Restituer	la définition des concepts : alternative imbriquée et alternative composée	
	la définition d'une structure complexe (mixte)	

Activité 2 : Algorithme

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
Déclarer	les variables qui entrent dans les calculs des moyennes des notes et du nombre d'échecs des deux genres des trois disciplines	
Écrire	l'algorithme qui calcule la moyenne par genre pour chaque discipline et couple de discipline pour chaque classe	
	l'algorithme qui calcule la moyenne par genre du nombre d'échecs pour chaque couple de discipline dans chaque classe	
Tirer	une conclusion par rapport à ce préjugé sur le genre	

Activité 3 : Programme

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
Choisir	un éditeur de code (NotePad et un langage de programmation (Python ou C)	
Écrire	le programme qui calcule la moyenne par genre pour chaque discipline et couple de discipline pour chaque classe	
	le programme qui calcule la moyenne par genre du nombre d'échecs pour chaque couple de discipline chaque classe	
Exécuter	le programme	
Corriger	les erreurs de syntaxe	
Tester	le programme	
Corriger	les erreurs de logique	
Quitter	le programme	
Arrêter	l'ordinateur	

- (1) Exemples d'Items
 - a) Restituer la définition d'une structure complexe
 - b) Différencier une boucle imbriquée d'une alternative imbriquée

(2) Situation similaire à traiter

Une rumeur circule selon laquelle il y a une discrimination dans les entreprises privées en ce qui concerne les salaires des hommes et des femmes à Kinshasa. Pour comprendre le phénomène, les élèves de 2^e année des humanités scientifiques sont appelés à faire les enquêtes dans cinq entreprises de Kinshasa pour les six derniers mois à partir des bulletins de paie de dix femmes et dix hommes en fonction des grades. L'enseignant des TIC leur demande de créer un programme qui calcule le salaire de base moyen pour les deux catégories par grade, par entreprise et pour les cinq entreprises. Les rubriques à prendre en compte pour le calcul du salaire sont : salaire de base, prime et transport mensuel.

MTIC 4.7 Tableaux uni et bidimensionnel

A. Savoirs essentiels:

Tableaux uni et bidimensionnel.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels « **Tableaux uni et bidimensionnel** ».

C. Exemple de situation

L'enseignant Mubenga des sciences physiques au Lycée Tuendelee de Lubumbashi présente à ses élèves de la 2^e année des humanités scientifiques, quatre formules chimiques des composés organiques suivants : CH₃ – CH₂ – COOH ; CH₃ – COOCH₃ ; CH₃ – CH₂ – COCI et CH₃- COO - COCH₃. Il les organise en sous-groupes et sollicite le concours de son collègue des TIC qui demande aux élèves d'écrire un programme qui affiche dans un tableau, la formule générale, la nomenclature, les propriétés physiques et chimiques des fonctions organiques auxquelles appartiennent chacun de ces composés suivant le modèle du masque ci-dessous :

Fonction	Formule générale	Nomenclature	Propriétés chimiques	Propriétés physiques
Acide carboxylique				
Ester				
Chlorure d'acide				
Anhydride				

(1) Algorithmique

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
Restituer	la définition des concepts : indice, variable scalaire, dimension, tableau (variable indicée)	
Différencier	le tableau du point de vue dimension et structure	
Dillerenciel	un tableau statique d'un tableau dynamique	
Déclarer	la variable « tableau » en spécifiant le type de données, la taille et le nom	
Accéder	aux éléments en fonction de leurs indices T[1], T[2],	
Afficher	les éléments du tableau en utilisant les boucles et les alternatives	
Rechercher	les éléments dans le tableau en utilisant les indices, les boucles et les alternatives	

(2) Programmation

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
Restituer	la définition des concepts : compilateur des codes et interpréteur des codes	
Choisir	un éditeur des codes (Notepad)	
	un langage de programmation (Python, ou C)	
Créer	le masque de saisie	
Déclarer	la variable « tableau » en spécifiant le type de données, la taille et le nom	
Accéder	aux éléments en fonction de leurs indices T[1], T[2],	
Afficher	les éléments du tableau en utilisant les boucles et les alternatives	
Rechercher	les éléments dans le tableau en utilisant les indices, les boucles et les alternatives	
Exécuter	le programme	
Corriger	les erreurs de syntaxe	
Tester	le programme avec quelques données	
Corriger	les erreurs de logique	
Enregistrer	le programme	
Quitter	le programme	
Arrêter	l'ordinateur	

- (1) Exemples d'items
 - a) Énumérer les deux manières pour déclarer un tableau en algorithmique et en programmation
 - b) Différencier $T_1[4,3]$; $T_2[n,2]$; $T_3[3,n]$

(2) Situation similaire à traiter

L'élève Koy de la 2^e année des humanités scientifiques du Lycée Mikembo dans la province du Kwilu, éprouve des difficultés à identifier les nouvelles provinces de la République Démocratique du Congo après le découpage territorial de 11 à 26 provinces. Il se confie à son enseignant des TIC qui, en classe, demande aux élèves de faire la recherche sur le Net et d'utiliser les données recueillies dans un programme qui affiche le nom de la province, son chef-lieu et sa superficie (en Python ou C).

MTIC 4.8 Algorithme de recherche simple

A. Savoirs essentiels:

Algorithme de recherche simple

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels «**Algorithme de recherche simple**».

C. Exemple de situation

Une catastrophe survient dans un village situé au sommet d'une colline où les habitants ont leurs champs sur un versant gauche au bord d'un ruisseau. La nuit, une pluie diluvienne accompagnée d'une forte tempête s'abat sur le village. Le matin, le constat est le suivant : toute la végétation des champs, sable, argile, limon, sol, dépôt caillouteux sont enlevés et déposés dans le ruisseau. Une excavation d'environ 50 m de profondeur s'est installée. Quelques cases ont perdu les toitures. L'enseignant des TIC de la 2^e année des humanités scientifiques de l'unique école du village, demande à ses élèves de rechercher sur le NET les agents causaux des érosions, d'identifier leurs types, d'indiquer celles qu'on retrouve dans leurs milieux, l'année de leur apparition (3 dernières années) et écrire un programme en python ou en C qui présente les informations recueillies dans un tableau (modèle ci-dessous) pour aider le chef du village dans la gestion de ces types de catastrophes.

Érosions	Année apparition	Causes	Sites

(1) Concepts de base

Actions (de l'élève)	Contenus (sur lesquels portent les actions)	
Restituer	la définition des concepts : langage de programmation à interpréteur des commandes, langages de programmation à compilateur, boucle principale, instruction de sortie de boucle	
Énoncer	le principe de la recherche dichotomique	
Différencier	la recherche séquentielle de la recherche dichotomique	
Rappeler	l'importance d'une instruction de fin de boucle	
Rechercher	sur le Net les agents causaux et les types d'érosions	
Indiquer	les types d'érosions trouvées sur Internet et/ou dans son milieu	
Présenter	les informations recueillies dans un tableau suivant le modèle indiqué	

(2) Algorithme (Recherche séquentielle ou simple)

	le tableau « Erosion2017_2019»
Déclarer	la structure du tableau : Érosion (type chaine de caractère), Sites (type chaine de caractère), Année (type numérique), Causes (type chaine de caractères), la variable « x » (l'élément recherché)
Enregistrer	les données dans le tableau
Nommer	une fonction qui fait la recherche séquentielle
Créer	une boucle qui parcourt le tableau jusqu'à l'élément recherché
Écrire	l'instruction de sortie de la boucle

(3) Programme

Actions (de l'élève)	Contenus (sur lesquels portent les actions)		
Choisir	un éditeur des codes (Notepad/Bloc note)		
	un langage de programmation (Python ou C)		
Énumérer	quelques langages de programmation à interpréteur des commandes		
	quelques langages de programmation à compilateur		
Créer	le masque de saisie		
	le tableau « Erosion2017_2019»		
Déclarer	la structure du tableau: « Érosion » (type chaine de caractère), « Sites » (type chaine de caractère, « Année » (type numérique), « Causes » (type chaine de caractères), la variable « Inf » (borne inférieure du tableau), la variable « Sup » (borne supérieure du tableau), la variable « Mid »(milieu du tableau), la variable « x » (l'élément recherché)		
Enregistrer	les données dans le tableau		
Nommer	une instruction qui fait la recherche séquentielle		
Créer	une boucle qui parcourt le tableau jusqu'à l'élément recherché		
Écrire	l'instruction de sortie de la boucle		
Exécuter	le programme		
Corriger	les erreurs de syntaxe		
Tester	le programme avec quelques éléments		
Corriger	les erreurs de logique		
Quitter	le programme		
Arrêter	le programme.		

E. Évaluation

- (1) Exemples d'items
 - a) Différencier les recherches séquentielle et dichotomique.
 - b) Montrer l'importance d'une instruction de fin de boucle dans un algorithme de recherche.

(2) Situation similaire à traiter

Visiter une décharge publique, identifier les objets périssables et non périssables, présenter les données recueillies dans un tableau suivant le modèle ci-dessous et faire une recherche dichotomique des objets transformables.

Objets	Provenance	État physique	Transformables (5 objets)	Non transformables (5 objets)
Périssables				
Non périssables				
Dangereux				

MTIC 4.9 Algorithme de tri des données dans un tableau

A. Savoirs essentiels:

Algorithme de tri dans un tableau.

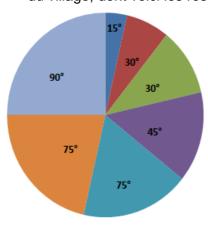
B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels « **Algorithme de tri des données dans un tableau** ».

C. Exemple de situation

L'enseignant des TIC de 2° année des humanités scientifiques du Lycée de Kingasani 2 à Kinshasa, donne un devoir à domicile aux élèves : suivre le bulletin météo diffusé par la RTNC, représenter dans un tableau toutes les températures en degré Celsius dans les villes de Goma, Kolwezi, Mbuji-Mayi, Gemena, Bunia, Matadi et Kinshasa. Voici le travail présenté par l'élève Ngoie : Kinshasa (32°C), Matadi (33°C), Bunia (26°C), Gemena (28°C), Mbuji-Mayi (30°C), Kolwezi (13°C), Goma (18°C) et Butembo (19°C). En classe, l'enseignant demande aux élèves d'écrire un algorithme qui ordonne les températures suivant l'ordre de grandeur croissant en se référant au travail de Ngoie.

(1)Algorithme


Actions l'élève)	(de	Contenus (sur lesquels portent les actions)		
Créer		un tableau de données		
Enregistrer		les données du tableau		
Différencier		le tri par sélection du tri à bulles		
Donner		les principes de tri par sélection et à bulles		
D. ()		la variable « Tableau »		
Déclarer		les variables « ville » et « température »		
		la variable « i » qui identifie le plus petit élément « i »		
Identifier		le plus petit élément dans la rubrique « température »		
Écrire		un algorithme qui recherche le plus petit élément et le placer à position voulue (tri par sélection)		
Placer		l'élément trouvé à la position voulue (tri par sélection)		
		la boucle principale qui identifie le point de départ du premier élément, puis le second jusqu'à l'avant dernier		
Écrire		la boucle secondaire qui, à partir du point de départ mouvant, recherche quel est le plus petit élément jusqu'à la fin du tableau		
		un algorithme qui permute deux éléments consécutifs (tri à bulles)		
Attribuer		la valeur « Vrai » à la variable « i » dès qu'une seule permutatio est faite		
Remettre		à « Faux » à chaque tour de la boucle principale		
Relancer		la boucle principale,		
Attribuer		la valeur « Vrai » à chaque départ de l'algorithme à la variable « i »		

(2)Programme

Choisir	un éditeur de codes
	un langage de programmation (Python ou C)
Créer	le masque de saisie
5/ 1	la variable « Tableau »
Déclarer	les variables « ville » et « température »
	la variable qui identifie le plus petit élément « i »
Identifier	le plus petit élément dans la rubrique « température »
Écrire	des instructions qui recherchent le plus petit élément et le place à la position voulue (tri par sélection)
Écrire	la boucle principale qui identifie le point de départ du premier élément, puis le second jusqu'à l'avant dernier
	la boucle secondaire qui, à partir du point de départ mouvant, recherche quel est le plus petit élément jusqu'à la fin du tableau
	des instructions qui permuttent deux éléments consécutifs (tri à bulles)
Attribuer	la valeur « Vrai » à la variable « i » dès qu'une seule permutation est faite
Remettre	à « Faux » à chaque tour de la boucle principale
Relancer	la boucle principale, et pour cela donner la valeur «Vrai » au tout départ de l'algorithme à la variable « i »
Exécuter	le programme
Corriger	les erreurs de syntaxe
Tester	le programme avec quelques éléments
Corriger	les erreurs de logique
Quitter	le programme

- (1) Exemples d'Items
 - a) Différencier le tri par sélection du tri à bulles.
 - b) Montrer l'importance de la boucle principale
- (2) Situation similaire à traiter dans un algorithme de recherche

 Des bruits courent selon lesquels les habitants du village Kayi ont
 beaucoup d'enfants par famille. Dans le souci de vérifier et de
 planifier les naissances, une enquête a été diligentée dans 7 familles
 du village, dont voici les résultats dans le diagramme ci-après :

Si on sait que les 6 familles qui ont chacune 3 enfants représentent 90° sur le diagramme ci-contre :

- Représenter les données dans un tableau d'effectifs
- Écrire un algorithme qui trie en ordre de grandeur croissante les données du tableau

MTIC 4.10 Fonctions et Procédures

A. Savoirs essentiels:

Fonctions et procédures.

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels « Fonctions et procédures ».

C. Exemple de situation

Les ouvriers de l'institut de la Gombe doivent labourer 432 m² du jardin scolaire de manière égale, mais quatre ouvriers sont absents.

L'enseignant de mathématiques de la 2^e année des humanités scientifiques de l'école demande à ses élèves de trouver :

- a) le nombre d'ouvriers commis à ce travail, sachant que suite à ces quatre absences chacun d'eux devra labourer 9m² en plus.
- b) deux nombres dont la somme est 4 et le produit -192 et d'en déduire le nombre d'ouvriers.

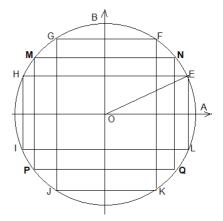
Les élèves sollicitent le concours de leur enseignant des TIC de 2e année des humanités scientifiques pour automatiser la procédure de résolution de cette équation. En classe, l'enseignant des TIC leur demande d'écrire une fonction qui retourne les racines d'une équation du second degré et qui donne la somme et le produit des racines automatiquement et qui détermine le nombre d'ouvriers commis à ce travail.

(1) Algorithmique

Actions (de l'élève)	Contenus (sur lesquels portent les actions)			
	la définition des concepts : procédure, programme appelant, fonction, argument, paramètre			
Restituer	la forme générale de l'équation du second degré			
	la formule du discriminant Δ et des racines x_1, x_2			
	la formule qui détermine la somme et le produit des racines			
	la procédure			
	les fonctions racines « RX1, RX2, RX »			
Nommer	la fonction « Delta »			
	la fonction « SommeRacines »			
	la fonction « ProduitRacines »			
Déclarer	les variables a, b, c, x ₁ , x ₂ , S, P, Δ			
Écrire	la fonction qui calcule la valeur de Δ			
Afficher	la valeur de Δ			
Écrire	la fonction qui calcule les valeurs des racines x1, x2			
Annalas	la fonction « Delta »			
Appeler	la fonction qui calcule les racines x ₁ et x ₂			
Afficher	les valeurs des racines x ₁ , x ₂			
Écrire	la fonction « SommeRacines »			
Ecule	la fonction « ProduitRacines »			
Annalar	la fonction « SommeRacines »			
Appeler	la fonction « PorduitRacines »			
Afficher	les valeurs de S et P			

(2) Programme

Actions (de l'élève)	Contenus (sur lesquels portent les actions)		
Choisir	un éditeur des codes (Notepad et / ou Bloc Note)		
	un langage de programmation (Python ou C)		
Créer	le masque de saisie		
	la procédure		
	la fonction « RESFonctionseconddegré »		
Nommer	la fonction « Delta »		
Nommer	la fonction « SommeRacines », qui calcule la somme S des racines		
	la fonction « ProduitRacines », qui calcule le produit P des racines		
Déclarer	les variables a, b, c, x ₁ , x ₂ , S, P, Δ		
Écrire	la fonction qui calcule la valeur de Δ		
Afficher	la valeur de Δ		
Écrire	la fonction qui calcule les valeurs des racines x1, x2		
A I	la fonction « Delta »		
Appeler	la fonction qui calcule les racines x ₁ et x ₂		
Afficher	les valeurs des racines x ₁ , x ₂		
Écrire	la fonction « SommeRacines »		
Ecilie	la fonction « ProduitRacines »		
Annolor	la fonction « SommeRacines »		
Appeler	la fonction « ProduitRacines »		
Afficher	les valeurs de S et P		
Exécuter	le programme		
Corriger	les erreurs de syntaxe		
Tester	le programme avec quelques données		
Corriger	les erreurs de logique		
Quitter	le programme		
Arrêter	l'ordinateur		


- (1) Exemples d'items
 - a) Définir une procédure.
 - b) Différencier une procédure d'une fonction.

(2) Situation similaire à traiter

Pour mieux faire comprendre à ses élèves les relations entre les nombres trigonométriques d'angles associés, l'enseignant TUMI de la 2^e année des humanités scientifiques leur fait observer le cercle trigonométrique ci-contre.

Sachant que deux angles sont associés si leur somme ou leur différence vaut 0°, 90° ou 180°.

L'enseignant demande à ses élèves d'écrire un algorithme qui exprime le sinus et le cosinus de chacun de ces angles en fonction du sinus ou du cosinus de AÔE.;

MTIC 4.11 Fichiers de données

A. Savoirs essentiels : Fichiers de données

B. Compétence

Après avoir réalisé l'ensemble des activités proposées, l'élève sera capable de traiter avec succès et de manière acceptable des situations faisant appel à des savoirs essentiels « **Fichiers de données** ».

C. Exemple de situation

Le préfet du Collège Cyprien à Kinshasa éprouve d'énormes difficultés à gérer son carnet d'adresses du personnel et sa mise à jour chaque fois qu'un membre du personnel change des coordonnées. Pour résoudre ce problème, il sollicite l'enseignant des TIC de la 2^e année des humanités scientifiques pour une solution informatique. Ce dernier, profitant de sa leçon sur les fichiers de données, demande à ses élèves d'écrire un programme qui gère un carnet d'adresses.

D. Activités

Actions (de l'élève)	Contenus (sur lesquels portent les actions)		
Restituer	la définition des concepts : fichiers, périphériques à mémoire de masse, enregistrements, fichier texte, fichier binaire, structure, accès séquentiel, accès direct, accès indexé		
Énumérer	les deux types de fichiers		
Différencier	un fichier texte d'un fichier binaire		
Indiquer	l'importance d'un fichier de données		
Déclarer	le nom du fichier « CarnetAdresse »		
	la structure du fichier : nom (chaine de caractère), prénom (chaine de caractères), Numéro téléphone (numérique), E-mail (chaine de caractères : alphanumérique)		
Écrire	le fichier sur disque		
Ouvrir	le fichier en écriture		
Enregistrer	les données dans le fichier		
Tester	la fin du fichier		
Fermer	le fichier		
Ouvrir	le fichier en lecture		
Lire	les données		
Tester	la fin du fichier		

Fermer le fichier	
-------------------	--

(1) Exemples d'items

- a) Citer les deux types de fichiers.
- b) Différencier l'accès séquentiel de l'accès direct.
- c) Montrer l'importance d'un fichier de données.

(2) Situation similaire à traiter

Pour permettre à l'Institut Lokolanza de Pweto dans le Haut-Lomami d'automatiser la gestion des « Palmares » de son école, l'enseignant des TIC de la 2^e année des humanités scientifiques demande à ses élèves d'écrire un programme qui crée et recherche les données dans un fichier, les résultats scolaires des élèves pour les cinq dernières années. Il met à leur disposition les données manuelles des fiches centralisatrices des résultats des années 2014 à 2018, présentées dans le tableau suivant le modèle ci-dessous :

Noms	Année	Classe	Pourcentage	Mention
KENZEK	2014	3 ^{ie} H.Sc.	65%	Passe
KAMBEMBO	2014	3 ^{ie} H.Sc.	48%	Double

REFERENCES BIBLIOGRAPHIQUES

I. DOCUMENTS GENERAUX

- 1. Allal, L. (1999). Acquisition et évaluation des compétences en situation scolaire, *Raison Éducative*, (2)1-2, 77-93.
- Antoun, Z. (2017). Analyse de situations-problèmes en algèbre, proposées dans un manuel du Québec, Bulletin de l'association des mathématiciens du Québec, (AMQ), (42)2, 68 – 70.
- 3. Astolfi, J.-P. (1993). Obstacles et construction de situation didactiques en sciences expérimentales, *Revue Aster*, (16), 104 141.
- 4. Bureau international de l'éducation (BIE). (2013a). *L'apprentissage pour l'éducation et le développement post 2015.* Genève : BIE-UNESCO.
- Bureau international de l'éducation (BIE). (2013b). Outils de formation pour le développement du curriculum, banque de ressources. Genève : BIE-UNESCO.
- 6. Bloom, B.S. (1973). Recent development in mastery learning. *Educational Psychologist*, (10), 204-221.
- 7. Braslavsky, C. (2001). *Tendances mondiales et développement des curricula*. Bruxelles: Conférence Association francophone d'éducation comparée (AFEC), Colloque international, 9 12 mai 2001.
- 8. Depover, C. et Noël, B. (2005). *Le curriculum et ses logiques*. Paris : L'Harmattan.
- Depover et Jonnaert, (2014). Quelle cohérence pour l'éducation en Afrique. Des politiques au curriculum. Hommage à Louis D'Hainaut. Bruxelles: De Boeck Supérieur.
- 10. Fabre, M. et Vellas, É. (2006). Situations de formation et problématisation. Bruxelles : De Boeck Supérieur.
- Huberman, M. (dir.), (1998(. Assurer la réussite des apprentissages? Les propositions de la pédagogie de la maîtrise. Lausanne: Delachaux et Niestlé.
- 12. Institut de statistique de l'UNESCO (ISU), (2013). Classification internationale type de l'éducation (CITÉ). Montréal : ISU UNESCO.
- 13. Jonnaert, Ph. (2009). *Compétence et socioconstructivisme : un cadre théorique*. Bruxelles : De Boeck Supérieur, (2ème édition, 1ère édition 2002).
- 14. Jonnaert, Ph., Depover, C., Malu, R. (2020). Curriculum et situations. Un cadre méthodologique pour le développement des programmes éducatifs. Bruxelles : De Boeck Supérieur.

- 15. Mottier-Lopez, L. (2008). Apprentissage situé. La micro culture de la classe. Berne : Peter Lang.
- 16. Piaget, J. (1975). *L'équilibration des structures cognitives*. Lausanne : Delachaux et Niestlé.
- 17. Vergnaud, G. (1996). *La théorie des champs conceptuels*, in J., Brun, (dir.). Didactique des mathématiques, (p. 196 242). Paris : Seuil.
- 18. Von Glasersfeld, E. (2004). Questions et réponses au sujet du constructivisme radical, in Ph. Jonnaert et D., Masciotra (dir.). Constructivisme, choix contemporains. Hommage à Ernst von Glasesrsfeld, (p. 291 317). Sainte-Foy: Presses de l'Université du Québec (Qc.).
- 19. Stratégie sectorielle de l'éducation et de la formation 2016-2025, (2015),
- 20. Stratégie continentale de l'éducation 2016 2025
- 21. UNICEF, 2017, Réimaginer l'éducation aux compétences de vie et à la citoyenneté au Moyen-Orient et en Afrique du Nord
- 22. Millénium Challenge Account Côte-d'Ivoire(MCA Côte d'Ivoire) , Plan d'Action Genre et Inclusion Sociale, Version 2 du 15 décembre 2021
- 23. Constitution de la République Démocratique du Congo
- 24. Loi-cadre du 11 février 2014 de l'Enseignement National
- 25. Lettre de politique Éducative de la République Démocratique du Congo

II. MANUELS ET OUVRAGES SPECIFIQUES

- 1. Arnaud, (1977). Cours de chimie organique, Ed. Gauthier Villars, Paris.
- 2. Bazouni, K.M. (2016), Physique-chimie 1ère S, Paris : Nathan
- 3. Beller, J.P. (1979), Physique, Paris: Vuibert
- 4. Beller, J.P. (1981), *Exercices de physique et chimie*, Exercices avec solutions, Paris : Vuibert
- 5. Benson, H. (1991), *Physique*, Mécanique, 3^{ème}, édition, Québec : Renouveau pédagogique
- 6. Boqueho, V. (2016), Toute la physique à portée de main, Paris : Dunod
- 7. Cledjo,O,. (1985). chimie 6ème, Tome 1, CRP, Kinshasa
- 8. Coup, J. (2004), Physique chimie 2^{nde}, Paris: Bordas
- 9. Dabancourt, C. (2008). Apprendre à programmer. Paris : Eyrolles
- 10. Darmangeat, C. (2008). *Algorithme et programmation pour non matheux*. Paris : Université Paris 7.
- 11. Delannoy, C. (1996). Programmer en langage C. Avec exercices corrigés. Paris : Eyrolles.

- 12. Delanoy, C. (2008). S'initier à la programmation. Paris : Eyrolles
- 13. Delaruelle, A. et Claes, A.I. (1969), *Eléments de physique*, Chaleur-Acoustique-Optique, Tome 2, Namur : Wesmael-Charlier(S.A)
- 14. Delaruelle, A. et Claes, A.I. (1969), *Eléments de physique*, Mécanique-Liquides- Gaz, Tome 1,8^{ème} édition, Namur : Wesmael-Charlier(S.A)
- 15. Dirand, B. et Decroix, S. (2007), Physique chimie, Terminale S, Paris : Clerc
- 16. Engler O. et Wang W. (2017). *Programmer pour les nuls*. Paris : Editions. First.
- 17. Eric, B. (2000), M. *Initiation au langage C*, Niveau 1 et 2
- 18. Faucher, R. (1967), Physique 1, C, D et E, Paris: Hatier
- 19. Faucher, R. (1976), Physique 2, C et T, Paris: Hatier
- 20. Hecht, E. (2012), *Physique*, 1ère édition, Bruxelles : De Boeck
- 21. Ibebeke saila,I., (2020). Cours de chimie organique, G2, inédit, UPN, Kinshasa.
- 22. Inaki de Aguirre, marie Anna van De Wiel, (1988). Introduction à la chimie général, Tome 2, Ed. De boeck et Larcier S.A., Bruxelles.
- 23. Jeannin, X. (2005), Le langage C, UREC / CNRS.
- 24. Jodogne, J. Dessart, A et Paul, J., (1975). Chimie minérale, Ed. De Boeck, Bruxelles.
- 25. Jodogne, J. et Dessart, A., (1970). Chimie organique, Ed. De Boeck, Bruxelles.
- 26. Le golf, V. (2011), *Apprenez à programmer en Python*, Paris :Le Livre Du Zéro.
- 27. Lemainque, F. (2015). Travaux pratiques Excel 2013. Paris: Dunod.
- 28. Lufimpadio Ndongala., (1998). Travaux pratiques de chimie (fiches de manipulations), Afrique Edition, Kinshasa.
- 29. Mayengo Nzita, N., Nsoni Zeno, JL., (2015). Maitriser la chimie 2, Ed. LOYOLA, Kinshasa.
- 30. Mayrargue, A. (2001), Physique technologie, cycle 3, Paris : Bordas
- 31. Roda J. (2010). Excel 2016. Paris: Micro Application.
- 32. Sapience, D. (2011), Sciences physiques et chimiques, Bac pro, Paris: Nathan
- 33. Schaum, D.et Van Der Merwe, C.W. (1991), *Physique générale*, Théories et problèmes, New York : McGraw-Hill
- 34. Serway, R.A. (1989), *Optique et physique moderne*, Physique 3,2^{ème} édition, Montréal : HRW Itée
- 35. Suinnen, G. (2005). Apprendre à programmer en Python. Liège : O'REILLY.

- 36. Verbist, Y.et al. (1998), *Physique* 5^{ème}, Option de base, Bruxelles : De Boeck &Larcier s.a.
- 37. Verbist, Y.et al. (1998), *Physique* 6^{ème}, Option de base, Bruxelles : De Boeck &Larcier s.a.

III. WEBOGRAPHIE

- fr.wilkipedia.org/wiki/titrage
- http://fr.shvoong.com
- http://www.multimania.com/bauwens/
- www.lachimie. fr/
- www.ledictionnairevisuel.com
- www.memo bac.fr
- www.oodoc.com/8859-chimie.php
- Docstring, Apprendre python: formation complète gratuite [2021], https://www.youtube.com/watch?v=LamjAFnybo0, (pages consultées le 10 août 2021)
- Tutech, Excel 2016, https://www.youtube.com/watch?v=Ak1nAphLee0&list=PLTOu3kW5HeCJ K91f34OX6Zewle6Sbjgpu, (pages consultées le 10 août 2021)
- Filim, Excel 3 Avancé Cours Format de cellule n°2, https://www.youtube.com/watch?v=oz35P_Xpat0&list=PLoolrb8qXo JgFdctBDiX81_AnrGVOd-qL, (pages consultées le 10 août 2021)